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Introduction to Avian Sensitivity Mapping 
A swift transition from CO2 emitting fossil fuels to renewable energy sources is essential. However, 
renewable energy facilities, such as wind and solar farms, and their associated infrastructures, such as 
power lines, can have a detrimental impact on biodiversity if poorly planned. It is now widely acknowledged 
that the best way to ensure these impacts are mitigated is to steer development away from high-risk 
landscapes, composing a strategic biodiversity assessment early in the planning process (Bennun et al., 
2021; Bright & Muldoon, 2017). Central to this is wildlife sensitivity mapping, a spatially explicit modelling 
approach used to identify areas where energy-infrastructure would likely impact wildlife negatively and 
where it should, therefore, be avoided.  
 
Wildlife sensitivity maps have the following broad characteristics: 
 

• They are used to identify areas at an early stage in the planning process containing ecological 
values sensitive to a specific influence or activity (typically, this is the construction, 
operation, and maintenance of energy infrastructure). 

• They typically should inform strategic planning decisions during the initial site selection 
phase of the development process and therefore are intended to operate at a landscape 
scale. As such, wildlife sensitivity mapping approaches do not replace the need for site-
specific Environmental Impact Assessments (EIAs) in the usual permitting process. 

• They collect and analyse spatial data, producing spatially explicit information employing 
spatial biodiversity data relating to species and/or sites. 

• They are predictive, providing a forecast of potential sensitivity across a wide landscape. 
They are based on the best available data and mathematical and graphical modelling 
exercises. As such, wildlife sensitivity maps should be regarded as providing a preliminary 
broad-scale assessment. Site-level evaluation through a comprehensive EIA is ultimately 
required to verify the wildlife composition of an area and the risk that renewable energy 
development would pose. 

Birds are one of the wildlife groups most directly impacted by energy-related infrastructure. Not only can 
inappropriately sited developments destroy important bird habitat, they can also cause direct mortality 
through collision with energy infrastructure such as overhead power lines and turbine blades, 
electrocution on energy pylons and through displacement from their favoured habitats, key flight paths and 
migration routes. BirdLife International is a world authority on developing maps of avian sensitivity for use 
in guiding the deployment of energy infrastructure. Sensitivity mapping was first pioneered by the RSPB 
(BirdLife in the UK) in Scotland, where it played a significant role in influencing the establishment of the 
region’s wind energy sector (Bright et al., 2008). BirdLife has supported many of its Partners to develop 
national avian sensitivity maps (e.g., Ireland, Mc Guinness et al., 2015; Greece, Dimalexis et al., 2010; 
South Africa, Retief, 2010) and was responsible for one of the first regional-scale maps, the Soaring Bird 
Sensitivity Mapping Tool (Allinson, 2017). BirdLife works to establish sensitivity mapping as a cornerstone 
of sustainable, nature-safe renewable energy development through its role as convener of the Convention 
on the Conservation of Migratory Species of Wild Animals (CMS) multi-stakeholder Task Force on 
Reconciling Selected Energy Sector Developments with Migratory Species Conservation (known simply as 
the CMS Energy Task Force) and as a founding member of the Coalition Linking Energy and Nature for action 
(CLEANaction). 
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AVISTEP: the Avian Sensitivity Tool for Energy Planning 
AVISTEP: The Avian Sensitivity Tool for Energy Planning is a free-to-access online mapping tool that provides 
a detailed spatial assessment of avian sensitivity to various types of energy infrastructure, including wind 
farms (both onshore and offshore), photovoltaic (PV) solar facilities, and overhead power lines 
(transmission lines and distribution lines). AVISTEP offers assessments at various spatial scales. As such, 
it can be used across the development process—both in support of national and subnational strategical 
planning and for a preliminary site level evaluation during the screening phase in the Environmental Impact 
Assessment. AVISTEP provides biodiversity insights early in the planning cycle when development can be 
steered towards low-risk sites. An early understanding of potential sensitivity is extremely useful for 
planners and developers. Forewarned of possible issues, they can ensure that appropriate mitigation 
measures are factored into project design from the outset. By ensuring that fewer renewable energy 
projects encounter conflicts with wildlife, AVISTEP can help speed up renewable energy growth whilst 
ensuring that this expansion is planned strategically and efficiently, optimising available space. 

AVISTEP provides users with maps depicting potential avian sensitivity for the following types of energy 
infrastructure: 

 

 

Overall methodology overview 

Onshore wind and Power lines 
We develop a spatially explicit approach to create a final map showing how bird sensitivity varies 
geographically. Our approach can be explained in the five main steps (Figure 1), although there may be 
slight differences depending on the country mapped. 
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Figure 1. General workflow containing the main steps to calculate bird sensitivity facing different energy infrastructures: 
1) Identify species and calculate the species sensitivity index using data on sensitivity to collision with turbines and 
displacement from preferred areas by the presence of wind farms; 2) produce gridded distribution maps for each 
selected species; 3) combine maps for all species using the sensitivity index to weight species; 4) add other sensitive 
areas from additional data sources; 5) categorise the sensitivity into four practical categories. 

 

The first step is to create an index as a sensitivity score for all species regularly occurring at the country 
level. These indices assess species' sensitivity to a particular type of energy infrastructure (Figure 1, step 
1). For instance, the sensitivity index for onshore wind considers factors such as collision susceptibility, 
displacement susceptibility, conservation status, and life history traits. In contrast, the sensitivity index for 
solar photovoltaic only considers the latter two. After identifying the at-risk species, we compile and refine 
their distribution maps, fitting them into a grid with a cell resolution of 5 x 5 km (Figure 1, step 2). The 
sensitivity scores for all species present within a grid cell are then summed, creating a species cumulative 
map (Figure 1, step 3). Additional spatial information regarding sensitive areas for bird conservation is also 
considered, including Land Use and Land Cover data, the Human Footprint Index, Important Bird and 
Biodiversity Areas, Protected Areas, and main movement corridors when possible. They are all combined 
with the species cumulative map using Multicriteria Analysis (Figure 1, step 4). The final step is categorising 
the sensitivity in each grid cell into four practical categories: Very High, High, Medium, and Low sensitivity 
(Figure 1, step 5). 

The methodology is designed to be flexible and adaptable to each country’s data availability and 
biodiversity context. Although the overall procedure for identifying priority species and producing maps 
follows a common framework (Figure 1), it can be adjusted to incorporate more or less detailed data when 
available, while maintaining consistency, confidence, and quality. To verify the specific approach used in 
each country, refer to the Appendix section. 

Calculating species sensitivity 
The sensitivity is calculated for different energy infrastructures, as each has a distinct impact to be 
considered. In creating a species sensitivity index, we adapt the sensitivity index developed by Certain et 
al. (2015) for offshore energy sensitivity mapping. In the equation, we replace the parameters (factors) 
representing impacts or relevant life history traits for each infrastructure when calculating the indices, 
while retaining the overall structure. Certain’s main innovation has been to differentiate between primary 
and aggravation factors, where primary factors are species’ characteristics that directly control 
vulnerability, while aggravation factors can increase a vulnerability that already exists due to the primary 
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factors, represented by exponents (Certain et al., 2015). Read Certain et al. (2015) and Garthe & Hüppop, 
(2004) for more details on parameter combinations. 

Onshore Wind 
The sensitivity index is calculated for each bird species regularly occurring in each country, excluding 
flightless, vagrants, or rare sightings. For onshore developments, we also exclude restricted seabirds. The 
respective national species lists to be assessed are created in agreement with BirdLife International and 
Partner organisations in each country or with local bird experts. To select the final priority species to be 
included in the assessment, we rank all species according to their sensitivity values. Overall, we consider 
around the top ~20% of all species per country per infrastructure, depending on the algorithm used to split 
species into categories (see Bivand, 2024), selecting the most sensitive ones as priorities (e.g. Very-high, 
High, and Medium categories). This threshold ensured that the most relevant species are represented and 
avoid several species with a lower index that could add up to a higher sensitivity than a few species with 
high sensitivity in the final map. During workshops with local bird experts, we assess the list. It is worth 
noting that the SI values are specific to each country. Therefore, our final rating provides a value that can 
only be used for comparisons within the subset of species and cannot be compared among different 
countries. 

The three main impacts of onshore wind energy on birds are 1) direct mortality due to collision with 
turbines; 2) displacement, and 3) habitat loss (Drewitt & Langston, 2006; Marques et al., 2014; May et al., 
2020). Distinct metrics are created to capture collision and displacement susceptibility in calculating a 
species sensitivity index for onshore wind. Additional metrics relating to conservation status and life 
history traits, such as annual adult survival and range rarity (endemism), can be included to capture the 
population implications of these impacts for the species. The impact of potential habitat loss is accounted 
for by assessing the land cover and other spatial information relevant for bird conservation (see Step 4).  

The sensitivity index for onshore wind energy is calculated using the formula below, which comprises three 
primary factors: collision (Co), displacement (Di), and conservation status (CnS); and two potential 
aggravation factors (Ag): annual adult survival (Su) and endemism (En), when included. Different 
aggravation factors could be considered depending on the country’s context and available datasets. 

 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝐶𝑜 + (
𝐷𝐼

5
)) × (𝐶𝑛𝑆)

(1−(
(𝐴𝑔1+𝐴𝑔2)

2
)/((

(𝐴𝑔1+𝐴𝑔2)
2

)+0.5))

 

 

Collision with wind turbines (Co) is the most direct threat and impact on bird populations, and has been 
reported in many species and locations worldwide (Loss et al., 2013; Marques et al., 2014; Perold et al., 
2020; Thaxter et al., 2017). However, multiple factors related to wind farm characteristics (e.g., turbine 
type, spatial design), and site-specific location (e.g., topology, land use) are also influencing collision risk 
(Marques et al., 2014).  

Different approaches could be used to identify bird susceptibility to collide with wind turbines. Through a 
modelling approach such as the one developed by Thaxter et al. (2017) considering the ecological 
characteristics and phylogenetic characteristics that make different taxonomic groups more sensitive to 
collision, it’s possible to assign a collision probability to most land-bird species worldwide. On the other 
hand, trait-based approaches can consider other important drivers like flight high and time flying in danger 
zones, vision and flight abilities, and foraging behaviour, to create a score for each species based on data 
available and expert opinion. To check which approach was used in each country in detail, see Appendix 
section. 

Displacement (Di) refers to the reduction in habitat use within areas influenced by wind energy facilities, 
which can result in decreased bird densities and, consequently, functional habitat loss over the medium 
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and long term (Bartzke et al., 2015; Drewitt & Langston, 2006). This type of impact has been proven for both 
sea- and land birds (Marques et al., 2020, 2021; Pearce-Higgins et al., 2009), and after the collision, it is 
thought to be the primary threat to birds posed by wind farms (Marques et al., 2021;Hötker, 2017). However, 
its importance and magnitude have been difficult to quantify due to the scarcity of long-term and rigorous 
studies employing Before-after control-impact (BACI) sampling designs (Hötker, 2017). A study from India 
has reported that the displacement of raptors had consequences on lower trophic levels, producing 
cascading effects on food webs (Thaker et al., 2018), highlighting the primarily underestimated effects that 
displacement could have on ecosystems. To consider displacement, we conduct a literature review to 
identify articles published on bird displacement, aiming to understand the likelihood of different bird 
families being impacted. In the formula, the displacement score is downweighed in comparison to 
collision, based on the scarcity of studies mentioned above. 

Conservation status (CnS) is assigned at the species level using manly the IUCN Red List categories 
Critically Endangered (CR); Endangered (EN); Vulnerable (VU); Near Threatened (NT); Least Concern (LC). 
The BirdLife database version varied depending on the year the data is assessed. In some cases, the 
national threat category was also considered to align with the national bird conservation policy. The 
weighting method concerning the risk of extinction for each category evolved for the countries with 
exponential logic being applied to the most recent countries instead of a linear one and with consideration 
of other parameter as population size and trends. Please see the Appendix. 

Annual adult survival (Su). The population-level impact of a single individual fatality event depends 
primarily on the species' life history traits. Specific life history traits, such as fecundity, age of maturity, and 
adult survival, are particularly relevant. K-selected species are characterised by low fecundity, late ages of 
maturity and high survival; thus, adult mortality impacts these populations (Niel & Lebreton, 2005; Saether 
& Bakke, 2000). The species groups with the highest rates of impact from wind development tend to be K-
selected species such as Accipitridae, Ciconiidae, or Bucerotidae (Thaxter et al., 2017); thus, it is a factor 
that must be carefully considered when evaluating impacts on bird conservation. We use annual adult 
survival calculated for all bird species to include a metric that could capture these life history factors (Bird 
et al., 2020). 

Endemism (En). Previous work on sensitivity mapping has included parameters that reflect the 
conservation status of species in the global context. Some examples of these parameters are the 
proportion of the global population present, the annual occurrence (Kelsey et al., 2018) or the percentage 
of the biogeographic population that occurs in the study area (Bradbury et al., 2014; Critchley & Jessopp, 
2019; Furness et al., 2013). Therefore, we create a metric that captures this aspect by calculating the 
percentage of the global distribution area within each country's territory. Therefore, if a species is endemic 
to a country, the value of endemism for that country would be 100%, and consequently, the sensitivity of 
that species would increase. To calculate this parameter, we use the distribution range maps and the global 
database of political country boundaries (Global Administrative Areas - GADM). We are not considering this 
metric for some countries, as it was not robust enough to accurately reflect the endemism complexity. 

To combine all parameters above in the formula and balance the contribution of them to the sensitivity 
index, we rescaled all values from 0.01 to 1, following recommendations from (Certain et al., 2015). 

Power Line – High voltage 
High voltage lines or Transmission lines usually consider the infrastructure with > 60 kV, but the specific 
designation can vary. Transmission lines impact birds mainly through collision with overhead cables, and 
except for articles addressing landscape metrics, studies that evidence degradation and habitat loss for 
susceptible species are scarce or non-existent. Thus, the sensitivity index for Transmission lines follows 
the formula below, where collision with overhead cables (PwCo) and conservation status (CnS) are the 
primary factors. Similar to wind farms, different aggravation factors (Ags) could be included depending on 
the country. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐶𝑜) × (𝐶𝑛𝑆)
(1−(

(𝐴𝑔1+𝐴𝑔2)
2

)/((
(𝐴𝑔1+𝐴𝑔2)

2
)+0.5))

 

https://datazone.birdlife.org/contact-us/request-our-data
https://gadm.org/
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Collision with energy cables (PwCo) occurs during bird flight when birds fail to see the overhead wires 
and represents a significant source of anthropogenic bird mortality (Loss et al., 2014), being responsible 
for different populations' decline (Alonso et al., 2024; Biasotto et al., 2022; Biasotto & Kindel, 2018). Bird-
related taxa typically show similar levels of sensitivity to collision, as they exhibit a strong phylogenetic 
signal (Prinsen et al., 2011). Different scientific approaches can identify collision-sensitive species, from 
literature review searching for main groups with published evidence to modelling collision risk based on 
morphology and behaviour traits, such as wing loading, visual field, and flight behaviour (Bernardino et al., 
2018; D’Amico et al., 2018). Trait model approaches can help fill the knowledge gaps regarding 
understudied species and areas. Refer to the Appendix section to check which approach was used for a 
specific country. 

Conservation status (CnS), Endemism (En), and Annual adult survival (Su) are calculated in the same way 
as for the onshore wind sensitivity index. 

Power Line – Medium and Low voltage 
Medium and low voltage lines or Distribution lines usually encompass the infrastructure with < 60 kV, but 
the specific designation can vary. Distribution lines primarily impact birds through collisions with overhead 
cables and electrocution on energy pylons and cables. Therefore, in addition to considering the species 
most sensitive to collision using the formula mentioned for the High-voltage lines (PwCo), a specific 
formula for calculating and identifying species sensitive to electrocution is also applied separately: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐶𝑜) × (𝐶𝑛𝑆)
(1−(

(𝐴𝑔1+𝐴𝑔2)
2

)/((
(𝐴𝑔1+𝐴𝑔2)

2
)+0.5))

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐸𝑙𝑒𝑐) × (𝐶𝑛𝑆)
(1−(

(𝐴𝑔1+𝐴𝑔2)
2

)/((
(𝐴𝑔1+𝐴𝑔2)

2
)+0.5))

 

 

Electrocution on power lines (PwElec) occurs when a bird simultaneously touches two-phase 
conductors or a conductor and a grounded structure. Still, other causes, although less frequent, are also 
possible (see Martín et al., 2022). Except for cases where birds are electrocuted immediately after colliding 
with cables, electrocution mainly occurs when birds use the pylons and wires for perching or nesting 
(Biasotto et al., 2021). Several studies indicated that electric shock could be one of the leading causes of 
population decline (Biasotto et al., 2025; Boshoff et al., 2011; Hernández-Matías et al., 2015). Although we 
have substantial information reporting the impact of electrocution on raptors, we know that different 
groups are being impacted worldwide (Biasotto et al., 2022). Various scientific approaches can identify 
electrocution-sensitive species, from literature review searching for main groups with published evidence 
to modelling electric shock risk based on morphology and behaviour traits (Biasotto et al., 2021). See the 
Appendix section to check which approach was used for a specific country. 

Conservation status (CnS), Endemism (En), and Annual adult survival (Su) are calculated in the same way 
as for the onshore wind sensitivity index. 

Mapping the distribution area for priority species 
Different spatial approaches can be used or combined to map the distribution of priority species (e.g., bird 
range maps, Area of Habitat maps, Species Distribution Models, etc.). In AVISTEP, we use the Area of 
Habitat (AOH) approach, for which different versions have been developed for most bird species worldwide 
at a 100 × 100 m grid resolution. AOH maps represent the suitable habitats within a species’ range and are 
considered an intermediate layer between the Extent of Occurrence (EOO) and the Area of Occupancy 
(AOO). These maps are generated using a modelling approach that integrates remotely sensed land-cover 
data translated into species-specific habitat preferences, for example, as defined by the IUCN Red List 
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Assessments (Lumbierres et al., 2022), and can incorporate additional parameters such as known 
minimum and maximum elevation limits. 

For each species, we generate a raster layer representing the probability of occurrence, expressed as the 
proportion of suitable habitat (AOH) within each grid cell (Figure 2). Because our assessment is conducted 
at a 5 × 5 km resolution, the original AOH maps are resampled to this grid size by calculating the proportion 
of AOH in each cell. Occurrence records from bird experts, monitoring programs, and citizen science 
platforms are then used to refine the likelihood of occurrence for each species. When a grid cell contains 
verified records for a species, we assign a very high probability of presence. The time window and frequency 
of occurrence considered in each country are provided in the Appendix. Finally, each raster layer is 
weighted by the corresponding species sensitivity value. 

 

Figure 2. Diagram showing the resampling of the original area of the habitat map (0 is absence, 1 is presence in a grid 
cell 100x100 m) in a final resolution of 5x5 km, calculating the total percentage of AOH in each cell. 

We adapt the Bradbury et al. (2014) formula to weight the raster for each species by its respective 
sensitivity index. For each grid cell, we apply the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼 
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Species occurrence certainty 
To provide information about the likelihood of the species' presence, we create a metric that combines the 
amount of AOH within and outside the ranges, as well as the confirmed presence of the species in each 
grid cell. This categorical parameter has values ranging from Low occurrence certainty (1) to Very high 
occurrence certainty (4) and reflects the level of evidence regarding the species present in that grid cell. 
The correspondence of the categories could change depending on the country, but overall can be 
interpreted as follows: 

Low occurrence certainty: The percentage of habitat suitable to find the species is < 50% (AOH), but its 
occurrence is not confirmed by on-the-ground surveys (1). 

Medium occurrence certainty: The percentage of habitat suitable to find the species is > 50% (AOH), but 
its occurrence is not confirmed by on-the-ground surveys (2). 

High occurrence certainty: The percentage of habitat suitable to find the species is < 50% (AOH), and the 
occurrence is confirmed by on-the-ground surveys (3). 

Very high occurrence certainty: The percentage of habitat suitable to find the species is > 50% (AOH), and 
the occurrence is confirmed by on-the-ground surveys (4). 

Creating a multispecies combination map 
By summing up all species-specific sensitivity maps, we create a multispecies combination map to obtain 
an overall sensitivity map throughout the country. Thus, this layer captures the cumulative impact over the 
range of species present in each area (by grid cell).  

*Distribution lines combine the map from Collision and Electrocution, conserving the maximum value for 
each grid cell since it is the only infrastructure with both impacts. Electrocution is very unusual for 
transmission lines. 

Adding other important areas for bird conservation 
To limit the impact of energy infrastructure, it is important to target development away from most 
conserved habitats and towards areas with lower ecological value, such as those already highly modified 
by human activity (Kiesecker et al., 2019). In addition to mapping bird distribution areas (creating a 
multispecies map), we also incorporate other relevant spatial layers to represent factors influencing bird 
conservation. These layers may include land cover and land use data, the human footprint index, key 
climate variables as water incidence, and information on major bird movement corridors. We integrate 
information for other sensitive areas from different sources, depending on each country's environmental 
context and data availability, using Analytic Hierarchy Process (AHP) & expert opinion, and multicriteria 
analysis (MCA) (Esmail & Geneletti, 2018). Integrating these datasets allows for a more comprehensive 
assessment of habitat quality, threats, and potential connectivity relevant to bird species.  

Identifying final sensitivity categories  
Depending on the nature of the data distribution, we classify the results into four categories using Jenks’ 
Natural Breaks algorithm, corresponding to Low, Moderate, High, and Very High bird sensitivity. This 
classification produces a bird sensitivity map that is easier to interpret and can be readily used by a wide 
range of stakeholders in decision-making processes.  

We also consider Important Bird and Biodiversity Areas (IBAs) or Key Biodiversity Areas (KBAs) and 
Protected Areas (PAs), which are areas identified as having high priority for bird conservation (BirdLife 
International, 2025), with the maximum sensitivity. In this way, cells designated as IBAs and PAs 
automatically received the maximum level of sensitivity (1), while all other cells will vary between 0 and 1. 
However, not all Protected Area designations have the same relevance for species conservation. We 
always seek to incorporate the different designations, but with weights that depend on the relevance and 
motivation for bird conservation. In some countries, we were able to include proposed IBAs/KBAs, as these 
have already met the criteria but are awaiting confirmation. For more details regarding IBAs and PA 
designations, please refer to the Appendix section. 
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Solar Photovoltaic (PV) 
The major impact of solar photovoltaic development on ecosystems is caused by habitat loss and 
degradation produced by direct land occupancy (Ascensão et al., 2023; Hernandez et al., 2014; Turney & 
Fthenakis, 2011). With a few exceptions (Smallwood, 2022), impacts are still largely understudied 
(Harrison et al., 2017; Walston et al., 2016). Therefore, the species-specific sensitivity based on different 
impacts created for the other energy developments does not apply to the context of solar photovoltaic 
energy. Although some species can indeed coexist with solar PV installations, we have used a 
precautionary approach, considering that the presence of solar photovoltaics would result in habitat loss 
and/or degradation for all species occurring in the area. 

 

Figure 3. General workflow containing the main steps to create a sensitivity map regarding solar photovoltaic 
developments: 1) Consider all species occurring and calculate an index based mainly on Conservation Status; 2) 
Produce gridded distribution maps for all species weighted Conservation Status; 3) Combine maps for all species 
creating a bird richness map; 4) Create a layer indicating potential wilderness areas and add other sensitive areas; 5) 
categorise the sensitivity into four practical categories. 

 

Calculating Sensitivity for all species occurring in the country  
We consider a list of all species regularly occurring in the country, individually weighted by their respective 
Conservation Status (CnS - primary factor) and aggravating factor, for example, endemicity, when relevant.  

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  (𝐶𝑛𝑆)(1−(𝐴𝑔)/((𝐴𝑔)+0.5)) 

 

Mapping the species distribution according to the Sensitivity  
Depending on the country mapped, different spatial data and approaches can be combined to map the 
distribution of priority species (e.g., bird range maps, Area of Habitat maps, Species distribution models, 
etc.). In AVISTEP, we use birdlife range maps rasterised in 5 x 5 km resolution or the area of habitat maps 
representing the probability of occurrence, expressed as the proportion of suitable habitat – AOH - within 
each 5 x 5 km grid cell. Refers to the prior section regarding Mapping the distribution area for priority species 
for more information. The corresponding species sensitivity value for Solar Photovoltaic weights the final 
raster for each species. 
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Creating a species richness map weighted by conservation status 
To create a surface representing the cumulative sensitivity, we sum all the rasters in the same grid cell, 
following the formula. 

∑ (𝐶𝑛𝑆)(1−(𝐴𝑔1)/((𝐴𝑔1)+0.5))

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

  

Creating a layer with potentially less disturbed areas and adding important areas for bird 
conservation  
To identify zones where the development of solar farms may negatively impact biodiversity, we usually 
combine the bird richness surface with a layer informing wilderness sites. Accordingly, areas far from the 
site with high value for the human footprint index (population density, built infrastructure such as roads, 
railways, factories, and night-time lights) would be less exposed to disturbance (Ascensão et al., 2023) and, 
therefore, consist of more relevant areas for bird conservation.  

Identifying final sensitivity categories  
Depending on the nature of the data distribution, we classify the results into four categories using Jenks’ 
Natural Breaks algorithm, corresponding to Low (1), Moderate (2), High (3), and Very High (4) bird sensitivity. 
This classification produced a bird sensitivity map that is easier to interpret and can be readily used by a 
wide range of stakeholders in decision-making processes. 

The information for Protected Areas, IBAs, and other high-priority areas for bird conservation is also 
considered at the top and consists of the same information that was previously used. Therefore, we 
combine these datasets to create the final sensitivity maps by retaining the maximum value from all 
overlapping cells. In this way, cells designated as IBAs and PAs automatically received the maximum level 
of sensitivity (1), while all other cells varied between 0 and 1, depending on their percentage of the trade-
off between bird richness and human footprint layers.  

Refer to the Appendix section to view the sources of information considered for each country.  

 

Offshore Wind 
Offshore wind energy will play a key part in the global transition to renewable energy sources but will also 
impact marine biodiversity. In this dynamic environment, not all species will be equally at risk from offshore 
renewables and sensitive species are not evenly distributed. For seabirds, the two main risks from offshore 
wind development are 1) collision with moving turbines or the static base of the turbine and 2) 
displacement through avoidance behaviour, barrier effects or habitat alteration (Certain et al., 2015; 
Bradbury et al., 2014; Furness et al., 2013; Garthe & Hüppop, 2004). How severely a species will be 
impacted will depend on the following factors; flight height, time spent flying, flight manoeuvrability, 
nocturnal flight activity, habitat flexibility, disturbance to marine traffic, disturbance to static structure, 
conservation status and annual adult survival. Where there is the most concentrated risk for development 
is dependent on the distribution of different species across an area. Building on existing work looking at 
seabird sensitivity indexes and sensitivity (Certain et al., 2015; Bradbury et al., 2014; Furness et al., 2013; 
Garthe & Hüppop, 2004) we have established the following approach for estimating areas of seabird 
sensitivity to offshore wind development. 

Delineating Area of Interest (AOI) 
For the AVISTEP offshore maps, the area of interest (AOI) is the boundary set for the seabird sensitivity 
analysis. This is determined prior to collating spatial data and estimating species sensitivity. In most 
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countries, the limits of the national Exclusive Economic Zone (EEZ) are set as the AOI. An EEZ is a well-
established and recognised boundary of the marine area within which a country has jurisdiction to explore 
and exploit natural resources and manage their marine environment (United Nations, 1982). Therefore, the 
full extent of the EEZ is used to facilitate the incorporation of AVISTEP results into future marine 
management and spatial planning. The coastal boundaries are taken from the local GADM boundaries 
(GADM, 2021) and EEZ boundaries are sourced from Flanders Marine Institute (Flanders Marine Institute, 
2023). Where using the EEZ is an unsuitable boundary, the AOI is delineated after consultation with local 
partners. 

Establishing a species list 
For each country, a list of seabird species for analysis is produced. For offshore sensitivity, all regularly 
occurring birds with a marine distribution within the AOI are listed. All breeding seabirds are included in the 
list. For non-breeding species, we investigate the frequency of occurrence. For species which may exhibit 
both onshore and offshore distribution within their range, marine distribution in the area is reviewed before 
the species can be added to the list for analysis. This includes some species within the Laridae and 
Phalacrocoracidae families. The seabird species list is validated with local partners and experts where 
available.  

Calculating species sensitivity 
Following the selected species, a sensitivity index is calculated using a trait-based approach. In this 
analysis, two types of risks are considered. The first type is an individual-level risk to seabirds that includes 
risks of individual harm from offshore wind development, such as collision and displacement. Following 
the approach in Furness et al. (2013) these are assessed separately. The second type of risk is the 
population level risk of additional threats for a given species. This includes the global and/or national red 
list status of a species. After collision and displacement risks are calculated separately, each are 
combined with an associated population risk score to produce an overall collision and an overall 
displacement result. 

Individual and population level risks are combined as follows: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑅𝑖𝑠𝑘 𝑥 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑅𝑖𝑠𝑘   

 

Risk Factors 

As with the onshore approach, collision, displacement and conservation risk are estimated using a 
combination of primary and aggravating risk factors. Primary factors are inherently risky behaviours, traits, 
or other parameters that directly contribute to a species’ vulnerability. Aggravating factors exacerbate an 
existing risk but have no inherent risk of their own when the associated primary risk is not present (Certain 
et al., 2015). For some countries, an additional risk factor is added where there is a known risk for a species 
that is not captured by the calculation of primary and aggravating factors.  

Conservation Status (CnS) is used to address the disparity in vulnerability of different seabird 
populations. Certain populations may have very low resilience to new threats when compared to others. 
Two species with equal individual risk are considered to have different overall sensitivity where one species 
would be disproportionately impacted on a population level. For example, endangered species collision 
fatalities will have a larger impact on a population than species with a low extinction risk. Often seabird 
species that are already at a high-risk for extinction are facing numerous threats such as bycatch and 
colony predation and already have a small population (Dias, et al. 2019). Any additional loss in individuals 
would then compound that population’s decline. 

Red list status (RL) is the primary factor used to estimate population-level risks to offshore wind 
development. In all countries the same scoring system was applied as onshore, conservation status was 
assigned at the species level using the IUCN Red List categories Critically Endangered (CR); Endangered 
(EN); Vulnerable (VU); Near Threatened (NT); Least Concern (LC). The weighting method concerning the 
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risk of extinction for each category evolved for the countries with exponential logic being applied to the 
most recent countries instead of a linear approach. Please see the Appendix for more details. 

Annual adult survival (Su) is used as an aggravating factor to conservation status. There are various life-
history factors than can affect a population’s ability to recover from additional mortalities or poor breeding 
success. These include life span, age of first breeding, adult survival, reproductive rate and parental 
investment. Overall, seabirds are long lived species in comparison to most other birds. They mature later 
in life and have smaller clutch sizes. We use annual adult survival as a metric to capture these traits (Bird 
et al., 2020). How this factor has been applied to conservation status has evolved for different countries, 
with survival being multiplied by the conservation risk in the most recent country. Please see the Appendix 
for more details. 

𝐶𝑛𝑆 =  𝑅𝐿 𝑥 𝑆𝑢  

 

Collision (Co): Wind turbines are novel structures in the marine environment and can be an obstacle for 
seabird flight paths. As a result, collision can occur with mobile objects in the rotor swept zone (turbine 
blades), or with static objects at the base of the turbine during construction, operation and 
decommissioning. Collision risk modelling has been the focus of windfarm sensitivity analysis in areas with 
established offshore wind industries (Furness et al. 2013; Garthe & Hüppop, 2004). Despite ongoing 
research into collision, there is still uncertainty surrounding the drivers and the frequency of collision of 
seabirds. As a result, risk of collision is estimated by scoring various behavioural and morphological traits 
of individual species.  

Exposure (Exp) is the primary factor used calculate the risk of collision with turbines offshore. This is a 
categorisation based off estimates of flight height and time spent flying combined or off evidence of flight 
behaviour such as flight height and foraging type. Relevant information is collected and categorised 
according to available data and expert elicitation.  

Flight behaviours are categorised as follows: 

0- No Risk 
1- Very Low Risk 
2- Low Risk 
3- Moderate Risk 
4- High Risk 
5- Very High Risk 

Flight Manoeuvrability (FM) and Nocturnal Flight Activity (Noc) are aggravating factors for exposure that 
incorporate the physical characteristics or behaviours of a species which influence the ability avoid last 
moment collisions. Flight manoeuvrability is calculated by dividing recorded body mass (Dunning, 2007) 
by wing length from AVONET (Tobias et al., 2022) as a proxy for wing loading. Nocturnal flight activity is 
categorised based on estimates of overall time spent flying at night, or categorised based on evidence of 
overall nocturnal activity type. Where no information is available, partial nocturnal activity is assumed. As 
these two aggravating factors may operate independently, the average is calculated and multiplied with the 
exposure score.  

Extra Risk Factor (ExR) 

Where there has been evidence of recorded collisions with wind turbines, an additional risk factor is added 
to their overall sensitivity. As we cannot establish from event records alone why these collisions are 
occurring, this factor is additive. Since this applies to probability of a collision occurring, it is added to the 
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exposure factor. This factor is weighted by strength of the evidence of collisions occurring for offshore 
structures. 

Collision (Co) was calculated as follows: 

𝐶𝑜 =  𝐸𝑥𝑝 𝑥  (
𝐹𝑀 + 𝑁𝑜𝑐

2
) +  𝐸𝑥𝑅 

 

Overall sensitivity to collision (CoSI) is then calculated by combining the collision score with the 
associated conservation status score: 

𝐶𝑜𝑆𝐼 =  𝐶𝑜 𝑥 𝐶𝑛𝑠  

 

Displacement (Di): The presence of offshore development may also deter seabirds from areas or force 
them to alter their movements and behaviours. Post construction, changes in distribution of seabirds in 
response to windfarm development has often been recorded (Lamb et al., 2024). The strength of this 
response often varies between taxa, breeding seasons, spatial and temporal extent of the disturbance and 
this response can be attraction or avoidance. Avoidance behaviour may adversely impact seabirds the 
most where it displaces them from key foraging areas or notably changes their time-energy budgets. 

Disturbance from Marine Traffic (MtD) and Static Structures (StD) are the primary factors for calculating 
displacement for seabirds. In line with the onshore approach, we applied a literature review looking for 
articles published regarding bird displacement to understand how likely different bird families are to be 
impacted. Some authors do not distinguish between types of disturbances. However, since marine traffic 
(i.e., vessels and helicopters) is expected to increase during construction and operation of offshore wind 
farms, we include them separately. For some species we did not find information about both disturbance 
types, but only for fixed structures; on those occasions, we scored both parameters equally. As these 
factors may operate independently, an average of the two is used to estimate disturbance. 

For each factor, disturbance was categorised into from 1 (low disturbance response) to 5 (high disturbance 
response). 

Habitat Flexibility (HbF) is the aggravating factor used for displacement. While the marine environment is 
dynamic and habitats often change overtime, the flexibility of foraging habitats or a specialisation of 
feeding for seabirds varies from species to species. This aspect of their ecology directly influences a risk 
or impact of displacement. A review of available data on diet and foraging is used to categorise species. 
Where no data was available for the species, proxy species were used to estimate factors. 

Habitat flexibility was categorised into from 1 (high habitat flexibility) to 5 (low habitat flexibility). 

Displacement was calculated as follows: 

𝐷𝑖 =   (
𝑀𝑡𝐷  +  𝑆𝑡𝐷

2
)  𝑥 𝐻𝑏𝐹 

 

Overall sensitivity to displacement (DiSI) is then calculated by combining the displacement score with 
the associated conservation status score: 

𝐷𝑖𝑆𝐼 =  𝐷𝑖 𝑥 𝐶𝑛𝑠  
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Mapping the distribution area for priority species 
Seabirds have a varied distribution during of their annual cycle, and a variety of spatial information is 
available to create an estimation of areas used across the year (for example, breeding colony information, 
known core migratory areas, tracking data and at-sea observations). For AVISTEP offshore sensitivity 
mapping, spatial data is split into areas of breeding and non-breeding or all-year distributions. The 
resolution of data available varies from country to country, so approaches to mapping distributions have 
been adjusted over time. All spatial data is rasterised on a 5x5km grid. 

Range Maps 
Range maps from the BirdLife DataZone are used to establish a base for the species distribution. These 
range maps are then checked against other sources and edited where necessary. Species are mapped by 
season, with resident species contributing more to the final maps than species only present in the non-
breeding season. When available, range maps delineated by local experts are given preference for species 
distribution. Where data is reliable, core areas are identified within range maps and given a higher weighting 
in analysis. 

Breeding colony buffers 
During the breeding period, seabirds are central-place foragers constrained to the areas around their 
nesting sites (Schreiber & Burger, 2002). The high use of these areas during this critical period makes them 
highly sensitive to anthropogenic impacts. In recent years, different approaches have been developed to 
identify these high use areas for seabirds. The “foraging radius approach” uses information about foraging 
ecology to predict foraging areas around breeding colonies (BirdLife International, 2010; Soanes et al., 
2016). In this method, foraging radii are drawn around a breeding colony based on the distance travelled by 
breeding birds, which grid cells inside the radius receiving a value of 1. It can be applied to any central-
place forager and requires little a-priori data on at-sea distribution (BirdLife International, 2010; Grecian et 
al., 2012). For countries containing very numerous colonies and/or species with very large foraging ranges, 
we modelled density around seabird colonies as gradient (Critchley et al. 2019). This approach uses the 
best estimate a colony size and foraging range to calculate the number of individuals extending out from 
the site using a log decay function. A log decay function assumes that the use of the surrounding waters 
reduces with increased distance from the colony. This seaward extension is computed for each colony for 
all listed breeding species and summed together to create a layer. If no foraging information was available 
for a given species, we use data from the most closely related species.  

Tracking Data 
To investigate high use areas both inside and out of the breeding season, tracking data is collated and 
analysed. Platforms such as the Seabird Tracking Database and Movebank are used to search for tracking 
data along with a literature review. GLS, GPS and PTT data are requested for analysis, and used according 
to their data accuracy and representativeness of species movements. Tracks from breeding and non-
breeding periods are analysed separately. Where sufficient breeding GPS data is available for identified 
colonies, kernel densities are used instead of seaward extensions. Due to the very large error associated 
with GLS tracking, GLS tracks are only used as corroborative data for other spatial information or expert 
advice (Phillips et al., 2004; Halpin et al., 2021). 

Bird Migration 

Marine areas that are used for onshore bird migration are analysed where data is available. This was done 
for Australia and Egypt. There were two analyses used for migratory maps. The first approach uses tracking 
data and ebird observations to create kernel densities estimates of key stopover sites for migrating birds. 
The other approach uses bird observations to calculate hotspot areas along the coast used for open water 
migration and estimates potential movement corridors between these hotspots using a least-cost paths 
analysis. 
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Creating multispecies combination map 
Following the methodology for onshore wind energy, sensitivity maps are produced by multiplying the 
values in the species distribution rasters by the species’ sensitivity index (SI), making this value spatially 
explicit in a 5 x 5 km grid cell. We combine the SI with the distribution layers using one of two approaches. 
The first approach is to creates a separate collision and displacement sensitivity layer for each species 
using the CoSI and DiSI. Each of these two layers are then summed with the other species sensitivity layers 
of their associated risk to form a cumulative collision sensitivity map and a cumulative displacement map. 
The two cumulative maps are then merged, with the maximum value used from each overlapping cell. The 
second approach is to attribute the maximum overall sensitivity result (CoSI or DiSI) to the cells of the 
individual species distribution layers. This creates a single sensitivity layer which either contains collision 
(CoSI) or displacement (DiSI) values for each species. Then, all the individual species sensitivity layers are 
summed to create a final cumulative species sensitivity layer. 

Identifying final sensitivity categories 
After obtaining each grid cell's final seabird sensitivity value, we classified the results into four categories 
using Jenks Natural Breaks algorithm using the ClassInt package in R Studio (Bivand, 2024). These four 
categories correspond to Low, Moderate, High, and Very High sensitivity, represented by green, yellow, 
orange and red cells on the map. This classification produced a map that is easier to interpret and can be 
readily used by a wide range of stakeholders in decision-making processes. For some countries, the 
assignment of each cell to one of the four categories was applied before considering the known areas most 
important for bird conservation, and which therefore should have maximum sensitivity. For countries with 
a very large AOI, two additional subcategories were input into the existing four categories. These 
subcategories were calculated using Jenks natural breaks again to produce eight overall categories from 
green to red (very low risk, low risk, low to moderate risk, moderate risk, high risk, high to very high risk, very 
high risk and extremely high risk). 

 

Adding other important areas for bird conservation 
Other important areas for bird conservation are also incorporated, including sensitivity habitats (e.g. coral 
reefs, seagrass and mangroves), conservations areas (such as protected areas and KBAs or IBAs) and 
migratory areas for non-marine birds. Areas are considered in three ways: 

1) Combined using a weighted average before or after the Jenks natural breaks classification. This 
approach is typically used if areas are very large so cannot be attributed the highest level of 
sensitivity across their extent within the AOI. 

2) Overlayed with the species sensitivity layer by the maximum value from each cell before the Jenks 
natural breaks classification. This is generally used when layers vary in value and are unlikely to 
interact with other layers (for example onshore bird migratory layers). 

3) Rasterised at the highest level of sensitivity (value of one) and are added on top of the classified 
sensitivity map. This approach does not impact the relative sensitivity of other cells as it is applied 
after the Jenks natural breaks classification. 
 

Understanding the final sensitivity categories 
The assessment of avian sensitivity presented in AVISTEP is intended to provide a broad scale 
understanding of the potential risks posed to birds by certain types of energy infrastructure. Evaluating 
spatial risk is key to improv early-stage renewable energy planning. However, it is important to recognize 
our imperfect knowledge of avian distribution and incomplete understanding of the factors that make 
certain bird species more susceptible to impacts from energy infrastructure. Furthermore, the maps show 
relative sensitivity within each country, so the sensitivity categories and values are only comparable 
between grid cells inside the country's territory. Both bird sensitivity parameters and data normalisation on 
individual layers are relative to each country's intrinsic minimum and maximum values.  
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By design, the assessments are precautionary and intended to provide an awareness of the at-risk bird 
species present within an area and what such a species composition might mean for developing renewable 
energy infrastructure and power lines. This information is intended to inform, rather than replace, 
subsequent site-scale evaluation. It is possible that an area predicted to be of low avian sensitivity could, 
following further local assessment, be shown to have a greater degree of sensitivity. Equally, areas deemed 
highly sensitive could ultimately be shown to be less sensitive. It is also the case that a highly sensitivity 
area could still be suitable for development if the correct mitigation measures are implemented. Therefore, 
those areas depicted as being highly sensitive should not be automatically assumed to be “go” or “no-go” 
areas for development.  

The sensitivity scores were grouped into four categories of sensitivity — Low, Moderate, High and Very High 
that should be interpreted as follows: 

 

Low  Development is considered to pose a low risk to bird populations. However, 
comprehensive site-level assessment is necessary to confirm the absence of 
significant risk.  

Moderate  Development is considered to pose a moderate risk to bird populations. However, 
comprehensive site-level assessment is necessary to confirm this level of risk.  

High  Development is considered to pose a high risk to bird populations. However, 
comprehensive site-level assessment is necessary to confirm this level of risk. This 
area may be unsuitable for development and will certainly require mitigation 
measures.  

Very High  Development is considered to pose a very high risk to bird populations. However, 
comprehensive site-level assessment is necessary to confirm this level of risk. This 
area is likely to be unsuitable for development and will certainly require mitigation 
measures.  

 

Most regions are likely to have sufficient available land of Low and Moderate sensitivity to meet their solar 
and wind targets, and therefore development of these technologies in High and Very High sensitivity areas 
should be discouraged. In contrast, it may be less easy to locate power lines away from areas of higher risk 
as they are typically required throughout the landscape.  

 

A universal colour-coding convention 
It is a universally recognised convention to communicate the status of something, especially risk, using a 
colour-coded system based on traffic lights known as the traffic-light or RAG rating. Traffic-light ratings are 
commonly used to rate performance, progress, risk, or overall status and are broadly utilised in different 
fields. The colour palette used in the final maps is colourblind-friendly. 

 

Wind and Solar Resources 

Wind resource 
To visualise the availability of wind resource for onshore and offshore wind energy development, we map 
areas suitable for wind farms and display them on the website, allowing users to choose to view the 
sensitivity of areas with good wind potential only. We use data from the Global Wind Atlas, which provides 
wind parameters tailored to the wind energy industry (World Bank Group, globalwindatlas.info/en/). The 

https://globalwindatlas.info/en/


21 
 

original data comes from the ERA5 dataset from the European Centre for Medium-Range Weather 
Forecasts (ECMRWF) from 2008–2017 and through a modelling system, they produce a final dataset at 250 
m of spatial resolution at several heights (i.e., 10m, 50m, 100m, 150m, 200m). For our study, we use the 
dataset at 100 m height and recalculate the mean average speed to a 5 x 5 km cell size. A common standard 
applied in the industry is that for onshore utility scale development mean wind speed must be ≥ 5 m/s 
onshore and ≥ 5 m/s offshore (Esmap, 2019). We considered all those areas above this threshold to be 
potentially suitable for development. 

Solar resource 
To visualise the availability of solar resources for photovoltaic energy development, we map areas suitable 
for solar PV and display them on the website, allowing users to choose to view only areas with good solar 
potential according to the Global Solar Atlas (World Bank Group, globalsolaratlas.info/map). From the 
parameters available for solar energy assessment, we used global horizontal irradiance (GHI), specifically 
the long-term yearly average of GHI (kWh/m2). This metric is commonly used in solar PV research (Baruch-
Mordo et al., 2019). We defined suitable areas for solar PV utility-scale development as those with a GHI ≥ 
1400 kWh/m2/year (He & Kammen, 2016). Setting this threshold was less straightforward than for wind 
resources, as different economic and geographical factors affect it (Suri et al., 2020) and can vary widely 
(Baruch-Mordo et al., 2019). However, we believe the value chosen represents a good compromise 
between resource availability and energy production efficiency. 

  

https://globalsolaratlas.info/map
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Wind Farm Onshore 

Calculating species sensitivity – STEP 1 
In creating a species sensitivity index for onshore wind, we used a modified version of the sensitivity index 
developed by Certain et al. (2015) for offshore energy sensitivity mapping. We adapted this methodology 
for land birds by modifying the metrics in the calculation of the indices whilst retaining their overall 
structure. The main innovation in the methodology has been to differentiate between primary and 
aggravation factors. Primary factors are species characteristics that directly control the vulnerability, while 
aggravation factors are those that can increase a vulnerability that already exist (Certain et al., 2015). These 
differences between factors are therefore incorporated in the mathematical formulation of the indices. 

The three main impacts of onshore wind energy on birds are collision, displacement, and habitat loss 
(Drewitt & Langston, 2006; Marques et al., 2014; May et al., 2020). In creating a species sensitivity index for 
onshore wind, separate metrics were created to capture collision and displacement susceptibility. 
Additional metrics relating to conservation status, annual adult survival, and range rarity were included to 
capture the population implications of these impacts for the species. The impact of habitat loss was 
accounted for through an assessment of land cover and land use data. The sensitivity index for onshore 
wind energy followed the formula: 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝐶𝑜 + (
𝐷𝑖

5
)) × (𝐶𝑛𝑆)

(1−(
(𝑆𝑢+𝐸𝑛)

2
)/((

(𝑆𝑢+𝐸𝑛)
2

)+0.5))

 

 

Where there are three primary factors: Co = collision, Di = displacement, and CnS = conservation status 
and two aggravation factors: Su = annual adult survival, and En = endemism. 

A detailed explanation of the different metrics employed is as follows: 

Collision (Co) is the most direct threat to bird populations, and it has been reported in multiple species 
and locations across the world (Loss et al., 2013; Marques et al., 2014; Perold et al., 2020; Thaxter et al., 
2017). However, multiple factors related to wind farm characteristics (e.g., turbine type, spatial design), 
and site location (e.g., topology, land use) have been found to influence collision risk (Marques et al., 
2014). 

To develop a metric that could identify the sensitivity of different taxonomic groups, we used a study by 
Thaxter et al., 2017. In this study, the authors analysed the ecological traits and phylogenetic 
characteristics that make different taxonomic groups more sensitive to collision. Through a modelling 
approach they assigned a collision probability to most land-bird species worldwide. Based on the authors 
recommendations, we summarised this value at the family level (average value). After that we categorised 
this value between 1 and 4. These categories were calculated following a natural break classification, the 
corresponding values for reach category were: 

- 1 = < 0.023 
- 2 = > 0.023 - 0.036 
- 3 = > 0.036 - 0.06 
- 4 = > 0.06 

Following advice from local experts (including from BirdLife partners) and recent published literature about 
collisions of migratory Pittidae with man-made infrastructures (Kumar et al., 2019; Low et al., 2017), we 
upgraded all migratory members of the Pittidae family to a value of 3. 

Displacement (Di) refers to the reduction in the habitat use of areas under the influence of wind energy 
facilities, which in the long-term produce a decrease in bird density and functional habitat loss (Drewitt & 
Langston, 2006; May, 2015). This type of impact has been proven for both sea- and land-birds (Marques et 
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al., 2021, 2020; Pearce-Higgins et al., 2009), and after collision it is thought to be the major threat to birds 
posed by wind farms (Hötker, 2017; Marques et al., 2021). However, its importance and magnitude has 
been difficult to quantify due to the scarcity of long-term and rigorous studies employing BACI 
methodologies (i.e., Before-after control-impact) (Hötker, 2017). A recent study from India has reported 
that displacement of raptors had consequences on lower trophic levels, producing cascading effects on 
food webs (Thaker et al., 2018), highlighting the largely underestimated effects that displacement could 
have on ecosystems. 

To produce a displacement metric, we referred to the work done by Hötker, 2017. In this study, the author 
reviewed all the evidence from the scientific and grey literature reporting displacement in bird species in 
Europe. The author divided this impact into two categories: negative – when displacement was reported to 
reduce species abundance; and positive – when there was no change or a positive effect was found in 
species abundance. Surprisingly, different studies report different responses for the same species 
depending on several factors. Through the literature review, the author was able to report the number of 
times a positive or negative effect had been found per species and, for those groups with enough samples, 
the statistical significance of this difference (binomial test). To transform these values into a metric that we 
could be employed in our equation, we assigned the following values: 

- 1 = Displacement never reported for the species. 
- 2 = Displacement reported for the species in at least one study. 
- 3 = Displacement more often reported, but differences not statistically significant. 
- 4 = Displacement more often reported and differences statistically significant. 

These scores were given at the family level. The whole family received the value of the highest scoring 
species included in that family. This precautionary approach was taken to ensure that similar species that 
have not been directly studied could be evaluated. This was especially important given the limited 
scientific evidence directly available for the project area. 

Scoring was modified for several families due to the availability of more recent research. This was the case 
for the following: 

- Accipitridae received a value of 4. Recent studies suggest that this impact is more severe that 
previously acknowledged (Fielding et al., 2021; Law et al., 2020; Marques et al., 2021, 2020; 
Santos et al., 2021; Thaker et al., 2018). 

- Otididae received a value of 3. This group was not included in Hötker, 2017, but some studies 
(Raab et al., 2014) and expert opinion suggested this was a more appropriate value. 

- Gruidae received a value of 3. On top of the evidence in Hötker, 2017 new studies from the USA 
suggest a stronger effect than previously acknowledged (Navarrete, 2011; Pearse et al., 2021, 
2016; Veltheim et al., 2019). 

Conservation status (CnS) was assigned at the species level using the IUCN Red List categories (BirdLife 
International, 2020) as follows: 

- 5 = Critically Endangered (CR) 
- 4 = Endangered (EN) 
- 3 = Vulnerable (VU) 
- 2 = Near Threatened (NT) 
- 1 = Least Concern (LC) and Data Deficient (DD) 

Annual adult survival (Su). The population-level impact of a single individual mortality event depends on 
the life history traits of the species involved. Some life history traits like fecundity, age of maturity, and adult 
survival are especially relevant. K-selected species are characterised by low fecundity, late ages of 
maturity and high survival; thus, adult mortality has high impacts on these populations (Niel & Lebreton, 
2005; Sæther & Bakke, 2000). The species groups with the highest rates of impact from wind development 
tend to be K-selected species such as Accipitridae, Ciconiidae or Bucerotidae (Thaxter et al., 2017); thus, 
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it is a factor that must be carefully considered when evaluating impacts on bird conservation. To include a 
metric that could capture these life history factors, we employed annual adult survival (Su) which has 
been recently calculated for all bird species (Bird et al., 2020). This value ranges from 0.31 to 0.98. To 
transform these values to categories from 1 to 5, we used a natural breaks classification algorithm 
implemented in the RStudio package classInt (Bivand et al., 2022). 

Endemism (En). Previous work on sensitivity mapping have included parameters that reflect the 
conservation status of species in the global context. Some examples of these parameters are the 
proportion of the global population present, the annual occurrence (Kelsey et al., 2018) or the percentage 
of the biogeographic population that occurs in the study area (Bradbury et al., 2014; Critchley & Jessopp, 
2019a; Furness et al., 2013). Therefore, we created a metric that would capture this aspect through a 
calculation of the level of endemism. Endemism (En) was calculated at the country level as the percentage 
of the total distribution range area that falls within the country’s boundaries. So, if a species were endemic 
to a country, the value of the endemism for that country would be 100% and consequently increase the 
sensitivity of that species. To calculate this parameter we used the distribution range maps (BirdLife 
International & The Handbook of the Birds of the World, 2019) and the global database of political 
boundaries GADM (Global Administrative Areas, 2021) in ArcGIS Pro (ESRI, 2021). To transform these 
values to categories from 1 to 5, we used the following conversion criteria: 

- 1 = 0-20% 
- 2 = >20-40% 
- 3 = >40-60% 
- 4 = >60-80% 
- 5 = >80-100% 

To standardise all metrics and make them comparable, we divided each of them by the maximum category 
value following recommendations from Certain et al., 2015. Sensitivity indices were calculated for each 
species separately for the four focal countries and then used to rank the most sensitive species per 
country. 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. Then we chose only those species with a sensitivity index of ≥ 0.3885 
(See tables in Supp. material). We found that this threshold ensured that the most sensitive species were 
represented, with it roughly corresponding to the top 15% of all species per country. To produce the final 
sensitivity scores, we normalised the values to a 0.01 to 1 scale in order to emphasise the much greater 
sensitivity of species in the top part of the list compared to the species at the bottom (Critchley & Jessopp, 
2019a). 

 

Mapping the distribution area for priority species – STEP 2 
To incorporate the species geographic distribution, we used area of habitat (AOH) maps (Brooks et al., 
2019). These maps represent the utilised habitats within the range of a species and can be considered an 
intermediate step between Extent of Occurrence (EOO) and Area of Occupancy (AOO). They have been 
created through a modelling approach based on remotely sensed land cover and elevation data and the 
habitat preferences of each species according to the IUCN (Lumbierres et al., 2022). These maps are 
available for most bird species worldwide in raster format with a spatial resolution of ~100 meters. Since 
our assessment was in a ~5x5 km grid cells resolution, we needed to transform the original AOH maps to 
our resolution. To do so, we calculated the total percentage of AOH that was present in each cell and retain, 
as part of the species distribution, only those cells where the percentage was ≥ 30%. 

To assess the accuracy of the new species distribution created using the AOH maps, and to complement 
these, we employed information about species presence from field surveys. Two main sources of 
information were used: 
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- BirdLife’s local partners compiled observational records for their respective countries from a range 
of sources (i.e., published, and unpublished literature, survey and project data, and a range of 
other sources). 

- Additional observational records came from the citizen science project eBird 
(https://ebird.org/home). To download and curate the datasets we used the RStudio package auk 
(Strimas-Mackey et al., 2018). To guarantee the accuracy of the data, we only included 
observations that were recent (i.e., 2010 – 2020) and came from protocols stationary or travelling. 
The maximum distance travelled was set to 7 km to ensure that all records were contained within 
the final ~ 5x5 km cells. 

With these datasets, we calculated two metrics per species: point prevalence and surface reduction. Point 
prevalence was calculated by dividing the total number of locations that fell within the new species 
distribution by the total number of locations present within the distribution range of that species (Dahal et 
al., 2022). While surface reduction was the total reduction in area between the range maps and the new 
species distribution based on the AOH maps. 

Several exceptions had to be made to this general methodology. On these occasions we had to use the 
BirdLife range maps as a base information and transform them directly into the ~ 5x5 km grid. This was the 
case for: 

- Species whose point prevalence was ≤ 60% or where we did not have an AOH map. 
- Species for which we did not have information from field surveys or where their presence was only 

confirmed outside the range. We only used those distribution maps based on AOH that had a 
surface reduction smaller than 60%. We chose this value because it was the average surface 
reduction for species with a low accuracy (i.e., point prevalence ≤ 60%). 

- Species with a migratory passage distribution in the country. The original AOH maps were created 
without considering the passage range. 

The final point prevalence and surface reduction values of the AOH maps after removing those species that 
did not meet the criteria mentioned above were: 

- India: Average point prevalence = 90.33% and surface reduction = 17.28% 
- Nepal: Average point prevalence = 91.19% and surface reduction = 24.86% 
- Thailand: Average point prevalence = 93.39% and surface reduction = 20.62% 
- Vietnam: Average point prevalence = 91.08 % and surface reduction = 18.38% 

Finally, for a few species we found out that there was strong evidence of presence outside the original range 
maps. To incorporate this information and complement the new distribution maps, we decided to add 
those cells outside the range maps where the species had been reported in more than 10 surveys during 
the period from 2010 to 2021. 

Species occurrence certainty  
To add extra information about the species presence and distribution, we created a metric based on the 
amount of AOH and the confirmed presence of the species in each grid cell. This categorical parameter 
has values from 1 to 4 and reflects the evidence of the presence of the species in that grid cell. The 
correspondence of the values is as follows: 

- 1 = AOH between 30% and 50%, but presence not confirmed by on the ground surveys. 
- 2 = AOH > 50%, but presence not confirmed by on the ground surveys. 
- 3 = AOH between 30% and 50% and presence confirmed by on the ground surveys. 
- 4 = AOH > 50% and presence confirmed by on the ground surveys. 

For those distribution maps that were based just on the BirdLife range maps, we created a classification 
that was comparable but based on the information available for those species. On these occasions, we 
gave a generic value of 1 to the range area and a value of 3 to those grid cells where the species presence 
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was confirmed by surveys. 

 

Creating multispecies combination map – STEP 3 
We created a multispecies combination map by summing the sensitivity maps for all species. To do so, we 
transferred the calculated sensitivity index value per species to their geographic distribution, making this 
value spatially explicit in a ~ 5x5 km grid cell. After that, we overlapped all the species geographic 
distributions and added the sensitivity values from all the species. Thus, the final score for each cell is the 
result of the summed values of all the species present in that cell. The bird sensitivity map captures the 
cumulative impact over the range of species present in each area. To make these maps comparable with 
the rest of sources of information, we normalised the values from 0 to 1. 

 

Adding other important areas for bird conservation – STEP 4 
Land Cover Land Use 
To limit the impact of renewable energy, it is important to target development away from natural habitats 
and towards areas with low ecological value, such as those already highly modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify cropland and urban areas with 
low ecological value. Specifically, we used the Copernicus global land- cover product for 2019 
(https://lcviewer.vito.be/2019) and the discrete land cover classification, which includes 23 classes at a 
~100 m spatial resolution (Buchhorn et al., 2020). We chose to use this dataset for its high accuracy 
(average ~80%) and its suitability for conservation (Jung et al., 2020). First, we reclassified all land cover 
classes to have a value of 1 except for cropland and urban/built up areas which received a value of 0. We 
then calculated the percentage of natural areas present in each 5x5 km cell. In our scoring, cells with a 
higher percentage of natural areas will result in a higher sensitivity score. To to give a greater importance to 
the bird sensitivity maps, we established that the land cover value would contribute only 20% to the final 
score. We did so by multiplying the land cover score by 0.2. 

 

Important Bird and Biodiversity Areas (IBAs)  
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. They cover about 6.7% of terrestrial areas, 1.6% of marine areas and 3.1% 
of the total surface area of the Earth (Donald et al., 2019). This dataset is curated by BirdLife International 
and available through their website (http://datazone.birdlife.org/site). The most up-to-date version of this 
data from 2022 was used for all four countries (BirdLife International, 2022). In some instances, areas not 
identified as IBAs but nonetheless known to be of global significant for at-risk bird species were also 
included. Cells overlapping with these areas received the maximum value of sensitivity.  

 

Protected Areas  
We used the World Database on Protected Areas (WDPA) from the Protected Planet website 

(www.protectedplanet.net). This database is updated by governments and curated by the UN Environment 

Programme World Conservation Monitoring Centre (UNEP-WCMC) and includes the most up-to-date 

information on protected areas. The latest version from 2022 was used, except for India where this dataset was 

under revision and the 2019 version was used instead. All protected areas were included, regardless of their 

IUCN management category. As with IBAs, cells overlapping with these areas automatically received the 

maximum level of sensitivity.  

 

http://datazone.birdlife.org/site
http://www.protectedplanet.net/
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Identifying final sensitivity categories – STEP 5 
The final sensitivity maps range from 0 to 1, and to classify the levels of sensitivity into four categories – 
from low to very high – we used the natural breaks algorithm implemented in ArcGIS Pro. 

 

Powerlines 
The calculation of the powerline sensitivity maps follows the same general approach used for onshore 
wind energy, with the exception that land cover information was not incorporated into the calculations. 
Whilst utility scale wind energy development and solar PV are known to be spatially intensive, it is not the 
case for powerlines infrastructure, which occupy much smaller areas. 

 

Calculating species sensitivity – STEP 1 
Powerlines are responsible for two main impacts on birds: collision and electrocution (Martín Martín et al., 
2019; Prinsen et al., 2011). However, the magnitude of these two impacts depends on certain technical 
characteristics of the powerline itself. Transmission lines (voltages > 60 kV) have been found to impact 
mainly through collision, while distribution lines (voltages from ~1 kV to 60 kV) can cause both collisions 
and electrocutions (Prinsen et al., 2011). 

Two indices based on both impacts were calculated: 

 

Powerline Collision 

   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐶𝑜) × (𝐶𝑛𝑆)
(1−(

(𝑆𝑢+𝐸𝑛)
2

)/((
(𝑆𝑢+𝐸𝑛)

2
)+0.5))

 

 

Powerline Electrocution 

      𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐸𝑙𝑒𝑐) × (𝐶𝑛𝑆)
(1−(

(𝑆𝑢+𝐸𝑛)
2

)/((
(𝑆𝑢+𝐸𝑛)

2
)+0.5))

 

 

Where there are three primary factors: PwCo = powerline collision, PwEC = powerline electrocution, and 
CnS = conservation status, and two aggravation factors: Su = annual adult survival, and En = endemism. 

A detailed explanation of the different metrics employed is as follows: 

Powerline collision (PwCo) and powerline electrocution (PwEc). To assess the species sensitivity to 
these two impacts, and apply a scoring system, we used three published reviews from Africa and Eurasia 
(Haas et al., 2003; Martín Martín et al., 2019; Prinsen et al., 2011). These reviews provide a classification at 
the family level of the main species affected by both impacts. Collision and electrocution have a strong 
phylogenetical signal, so related taxa typically show similar levels of sensitivity (Prinsen et al., 2011). 

Four categories were used by these authors to measure sensitivity: 

- Category 0 = no casualties reported or likely. 
- Category I = casualties reported, but no apparent threat to the bird population. 
- Category II = regionally or locally high casualties, but with no significant impact on the overall 

species population. 
- Category III = casualties are a major mortality factor, threatening a species with extinction, 

regionally or at a larger scale. 
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Slight differences were found in the classification for certain families between the three publications. To 
unify this information, we decided to retain the most common value (mode). In some cases, the values 
assigned to the families corresponded to an intermediate value between categories (i.e., I-II, II-III). To 
transform these categories to values that could be fitted in the sensitivity index score we used the following 
conversion scheme: 

- Category 0 = 1 
- Category I = 2 
- Category I-II = 3 
- Category II = 4 
- Category II-III = 5 
- Category III = 6 

Some bird families present in our study area were not assessed in any of these reviews and others had 
more recent information available. On those occasions, a literature review was made using Google Scholar 
including the formula: ("genus" OR "common name”) AND ("collision" OR "electrocution"). 

After this review was made and using the same criteria applied by Prinsen et al., 2011, we applied the 
following scoring: 

- Family Burhinidae was scored as Category II (Garcia-del-Rey & Rodriguez-Lorenzo, 2011). 
- Family Glareolidae was scored as Category I (Garcia-del-Rey & Rodriguez-Lorenzo, 2011). 
- Family Jacanidae was scored as Category I (De La Zerda & Rosselli, 2003). 
- Family Phoenicopteridae was scored as Category III (BirdLife International, 2019; Picazo Talavera, 

2014; Tere & Parasharya, 2011). 

For Families for which no information could be found that were potentially sensitive to collision or 
electrocution based on their morphology or behaviour, we assigned scores of similar related families. For 
instance, family Anhingidae received the same scores as Phalacrocoracidae, family Heliornithidae 
received the same scores as Anatidae, family Turnicidae received the same score as Phasianidae, and 
families Dromadidae, Ibidorhynchidae, and Rostratulidae received the same scores as Scolopacidae. 
Families where no information was available were included as Category 0 for both collision and 
electrocution. 

Finally, for some families, we found that behavioural and ecological differences at the species level could 
severely affect the sensitivity to these threats. For instance, some species from the Phasianidae family in 
Asia have a high dependency on forested habitats which they rarely abandon, making them less likely to 
collide with powerlines when compared to European species which mostly occupy more open 
landscapes. Since the score for the whole family was mostly based on European and African species, we 
decided to downgrade species that showed a different habitat preference. Thus, species with high forest 
dependency belonging to families Tytonidae, Strigidae, and Phasianidae were downgraded to category I for 
collision and electrocution. 

Conservation status (CnS), endemism (En), and annual adult survival (Su) were calculated in the same 
way as for the onshore wind sensitivity index. 

To standardise all metrics and make them comparable, we divided each of them by the maximum category 
value following recommendations from Certain et al. (2015). Sensitivity indices were calculated for each 
species separately for the four focal countries and consequently used to rank the most sensitive species 
per country. 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values for collision and electrocution. In the case of collision, we included 
species with a sensitivity value ≥ 0.3297, while for electrocution we included species with a value ≥ 0.251. 
In both cases, these values approximately correspond to the top 15% of the most sensitive species per 
country (see tables and in Supp. Material). We found that this threshold ensured that the most sensitive 
species were represented. To produce the final sensitivity scores, we normalised the values to a 0.01 to 1 
scale in order to emphasise the much greater sensitivity of species in the top part of the list compared to 
the species at the bottom (Critchley & Jessopp, 2019a). 



37 
 

Species geographical distribution, Important Bird Areas, and Protected Areas were the same datasets 
used for the onshore wind energy sensitivity analysis. 

 

Mapping the distribution area for priority species – STEP 2 
Species geographical distribution were the same datasets used for the onshore wind energy sensitivity 
analysis. Following the same methodology, we first transferred the sensitivity indices values per species to 
their geographic distribution, making this value spatially explicit in a ~5x5 km grid cell. 

 

Creating multispecies combination map – STEP 3 
We created a multispecies combination map by overlapping all the species geographic distributions and 
added the sensitivity values from all the species. Thus, the final score for each cell was the result of the 
summed values of all the species present in that cell. We did this separately for the collision and 
electrocution sensitivity index; thus, two different maps were created, one for collision and one for 
electrocution sensitivity. To make these maps comparable with the rest of sources of information, we 
normalised the values from 0 to 1. 

Transmission powerlines (voltages > 60 kV) affect birds mainly through collision; thus, the collision 
sensitivity maps could be used for this powerline type. However, distribution powerlines (voltages from ~1 
kV to 60 kV) affect birds through both collision and electrocution, so the sensitivity maps for collision and 
electrocution needed to be combined. To do so, we overlapped both maps so that the final score of each 
cell was the maximum value of either sensitivity indices. In this way we ensured that the final sensitivity 
score for that area was calculated based on the most sensitive species present, regardless of the type of 
impact. 

 

Adding other important areas for bird conservation – STEP 4 
Important Bird Areas and Protected Areas were the same datasets used for the onshore wind energy 
sensitivity analysis. For both collision and electrocution sensitivity maps, we incorporated the IBAs and 
Protected Areas by giving a score of 1 to all overlapping cells with these areas, the maximum level of 
sensitivity. 

 

Identifying final sensitivity categories – STEP 5 
The final sensitivity maps ranged from 0 to 1. For the transmission lines, to classify the levels of sensitivity 
into four categories – from low to very high – we used the natural breaks algorithm implemented in ArcGIS 
Pro (ESRI, 2021). For the distribution lines, to do this same classification and make both maps comparable, 
we used the same breakdown values. 

 

Solar Photovoltaic (PV) 
A different approach was taken when considering Solar PV. The major impact on ecosystems of this form 
of energy development is caused by habitat loss and degradation produced by direct land occupancy 
(Hernandez et al., 2014; Turney & Fthenakis, 2011). A limited number of studies have reported the impact 
of bird collision for certain geographic areas, mainly from the USA (Smallwood, 2022), but the impacts are 
still largely unknown (Harrison et al., 2017; Walston et al., 2016). Therefore, creating indices reflecting 
species-specific sensitivity was not possible. We considered that the presence of this type of 
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infrastructure would result in habitat loss and/or degradation for all species present in that area equally. 
Although it is true that some species can coexist with solar PV installations, we have applied a 
precautionary approach. 

The methodology for creating this assessment followed that used for onshore wind energy, with the 
exception of the inclusion of the species indices. The information for land cover data, protected areas, and 
IBAs was the same as previously used. To create the final sensitivity maps, we combined these datasets 
by retaining the maximum value from all overlapping cells. In this way, cells catalogued as IBAs and 
Protected Areas automatically received a value of 1 (maximum level of sensitivity), while all other cells 
will vary between 0 and 1 depending on their percentage of natural habitat cover. To produce the sensitivity 
categories, we used Natural breaks classification. 

 

Wind Farm Offshore 
The methodology for offshore wind sensitivity mapping followed a similar structure to that of onshore wind 
energy. First, to determine the list of species that will be included in the analysis per country, we 
overlapped the distribution range maps (BirdLife International & The Handbook of the Birds of the World, 
2019) for all seabird species within the respective exclusive economic zone (EEZ) for each country. All 
species catalogued as seabirds by BirdLife International were included in the analysis regardless of being 
considered coastal or pelagic. The final list of species per country can be found in the Supplementary 
Material. 

 

Calculating species sensitivity – STEP 1 
We used a modified version of the sensitivity index developed by Certain et al. 2015 for sensitivity mapping 
in relation to offshore energy. This methodology has been used in similar exercises for Ireland (Critchley & 
Jessopp, 2019b) and Scotland (Searle et al., 2019). In turn, this index is a renewed version of one created 
by Garthe & Hüppop, 2004 who pioneered this field of work. The main innovation of this methodology is 
the differentiation between primary and aggravation factors. Primary factors are species characteristics 
that directly control the vulnerability, while aggravation factors are those that can increase a vulnerability 
that already exists (Certain et al., 2015). These differences between factors are therefore incorporated in 
the mathematical formulation of the indices. Although we mostly based our work on this methodology, we 
incorporated concepts, information and methods from other works like Bradbury et al. (2014), Furness et 
al. (2013), and Kelsey et al. (2018). Moreover, most of the information for scoring the different parameters 
by species came from Bradbury et al. (2014), Certain et al. (2015), Critchley & Jessopp (2019a), Furness et 
al. (2013), Kelsey et al. (2018) and, Robinson Willmott et al. (2013). When we could not find information 
from these sources, we conducted a literature review to extract the necessary information. If no 
information was available to estimate a metric value for a given species, we used data from similar 
species. Finally, when several sources disagreed, we used the most recent values. Information about 
parameter values and sources of information can be found in the Supplementary Material. 

As with onshore wind energy development, collision and displacement are two of the main impacts 
described for offshore wind energy (Furness et al., 2013; Garthe & Hüppop, 2004). Collision has been 
mostly related to flight characteristics of the species, while displacement has been traditionally linked to 
habitat flexibility and disturbance metrics. 

Two different sensitivity indices were created: 
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Offshore Wind Collision 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝐴1 × 𝐴2)
(1−(

(𝐴3+𝐴4)
2

)/((
(𝐴3+𝐴4)

2
)+0.5))

× (𝐶𝑛𝑆)((1−𝑆𝑢)/(𝑆𝑢+0.5) 

 

Where there are three primary factors: A1 = % of time flying at blade height, A2 = % of time spent flying, and 
CnS = conservation status, and three aggravation factors: A3 = nocturnal flight activity, A4 = flight 
manoeuvrability, and Su = annual adult survival. 

A detailed explanation of the different metrics employed is as follows: 

Percentage of time flying at blade height (A1). This parameter is directly related to the species flight 
height, and it is one of the main factors influencing collision. The height range selected to represent the 
blade height was between 20-150 meters. 

We assigned values from 1 to 5 where: 

- 1 = 0 – 5% 
- 2 = > 5 – 10% 
- 3 = > 10 – 15% 
- 4 = > 15 – 20% 
- 5 = > 20 – 100% 

Percentage of time spent flying (A2). Percentage of time in flight during a complete day (24h; day and 
night). Robinson Willmott et al. (2013) and Kelsey et al. (2018) did not include this specific parameter, but 
instead they calculated diurnal flight activity and nocturnal flight activity separately. To use these sources, 
we calculated the average of the nocturnal and diurnal flying activity. We assigned values from 1 to 5 
where: 

- 1 = 0 – 20% 
- 2 = > 20 – 40% 
- 3 = > 40 – 60% 
- 4 = > 60 – 80% 
- 5 = > 80 – 100% 

Nocturnal flight activity (A3). Percentage of time in flight during night. We assigned values from 1 to 5 
where: 

- 1 = 0 – 20% 
- 2 = > 20 – 40% 
- 3 = > 40 – 60% 
- 4 = > 60 – 80% 
- 5 = > 80 – 100% 

Flight manoeuvrability (A4). Aerial agility of species and hence their potential to micro-avoid 
collision with wind turbines at sea. We assigned values from 1 to 5 where: 

- 1 (very high manoeuvrability) to 5 (very low manoeuvrability) 

Conservation status (CnS) was the same parameter used in the onshore sensitivity assessment. Most 
previous studies have included information about population and conservation status at the national or 
regional level (e.g., Bradbury et al., 2014; Kelsey et al., 2018). The lack of this information for our study area, 
obliged us to employ a simplified version of this score. 

- 1 = Least Concern (LC) 
- 2 = Near threatened (NT) 
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- 3 = Vulnerable (VU) 
- 4 = Endangered (EN) 
- 5 = Critically Endangered (CR) 

Annual adult survival (Su) was the same parameter considered in the onshore sensitivity assessment. 
However, in this case we followed the classification proposed by Critchley & Jessopp (2019a), specifically 
for seabirds. 

- 1 = < 0.75 
- 2 = > 0.75 – 0.8 
- 3 = > 0.8 – 0.85 
- 4 = > 0.85 – 0.9 
- 5 = > 0.9 

 

Offshore Wind Displacement 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = ((𝐵1 + 𝐵2)/2)(1−𝐵3)/(𝐵3+0.5) × (𝐶𝑛𝑆)((1−𝑆𝑢)/(𝑆𝑢+0.5) 

 

Where there are three primary factors: B1 = disturbance by vessels & helicopters, B2 = disturbance by 
structures, and CnS = conservation status, and two aggravation factors: B3 = habitat flexibility, and Su = 
annual adult survival. 

A detailed explanation of the different metrics employed is as follows: 

Disturbance by vessels & helicopters (B1). This parameter measures the escape response produced by 
vessel and helicopter traffic. 

- From 1 (low disturbance response) to 5 (high disturbance response) 

Some authors do not distinguish between disturbance produced by fix ed structures and marine traffic. 
However, since marine traffic (i.e., vessels and helicopters) is expected to increase during construction 
and operation of offshore wind farms, we included them separately. For some species we did not find 
information about both disturbance types, but only for fixed structures; on those occasions, we scored 
both parameters equally. 

Disturbance by structures (B2). Macro-avoidance behaviour from fixed structures on the sea (i.e., 
offshore wind farms) and possible displacement from areas under the influence of these structures. 

- From 1 (low disturbance response) to 5 (high disturbance response) 

Habitat flexibility (B3). Ability of the species to feed on a variety of food sources and/or forage within 
multiple habitat types, or if, on the contrary, the species is restricted in their diet and/or forages in very 
particular habitats. 

- From 1 (high habitat flexibility) to 5 (low habitat flexibility) 

Conservation status (CnS) and annual adult survival (Su) were the same parameters calculated for the 
offshore wind collision sensitivity index. 

To standardise all metrics and make them comparable, we divided each on them by the maximum category 
value following recommendations from Certain et al. (2015). Sensitivity indices were calculated for each 
species separately for the three focal countries with EEZs (India, Thailand and Vietnam). 
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Mapping the distribution area for priority species – STEP 2 
For species geographical distributions, we used distribution range maps (BirdLife International & The 
Handbook of the Birds of the World, 2019). Following the same methodology we used for onshore wind 
energy, we first transferred the sensitivity indices values per species to their geographic distribution, 
making this value spatially explicit in a ~5x5 km grid cell.  

 

Creating multispecies combination map – STEP 3 
We overlapped all the species geographic distributions and added the sensitivity values from all the 
species. Thus, the final score for each cell was the result of the summed values of all the species present 
in that cell. We did this separately for the collision and displacement sensitivity index; thus, two different 
maps were created, one for collision and one for displacement.  

To make these maps comparable with the rest of sources of information, we normalised the values 
from 0 to 1. We then overlapped both maps so that the final score of each cell was the maximum value of 
either sensitivity indices. In this way, we ensured that the final sensitivity score for an area was calculated 
based on the most sensitive species present, regardless of the type of impact. 

 

Adding other important areas for bird conservation – STEP 4 
Seabird Colonies 
Most seabirds show wide home ranges during most of their annual cycle; however, during the breeding 
period they are central-place foragers constrained to the areas around their breeding grounds (Schreiber 
& Burger, 2002). The high use of these areas during this critical period makes them highly sensitive to the 
presence of anthropogenic impacts. Thus, identifying areas of high use around colonies can help us to 
identify sensitive areas for offshore wind energy development. 

In recent years, different approaches have been developed to delineate important areas for seabirds. The 
“foraging radius approach” is one of these and uses information about foraging ecology to predict foraging 
areas around breeding colonies (BirdLife International, 2010; Soanes et al., 2016). In this method, one or 
more foraging radii are drawn around a breeding colony based on the distance travelled by breeding birds. 
It can be applied to any central-place forager and requires little a-priori data on at-sea distribution (BirdLife 
International, 2010; Grecian et al., 2012). 

To delineate these areas, we first compiled a database of seabird colonies in the region. Through an 
exhaustive literature review and expert consultation, we georeferenced all the seabird colonies known 
within the exclusive economic zones (EEZs) of the focal countries. We then reviewed available information 
on foraging distance parameters, and we prioritised the “mean maximum distance” defined as “the 
maximum range reported in each study averaged across studies” (BirdLife International, 2010; Thaxter et 
al., 2012). For some species, we could only find information from one study, thus the value used was the 
maximum range reported in that study. If no information was available for a given species, we used data 
from the closest related species. 

In the foraging radius approach, foraging habitat preferences are often used to refine areas around 
colonies (Soanes et al., 2016). However, due to the lack of information about habitat use from most of our 
focal species, we simplified the methodology and created a circular buffer around each colony with the 
mean maximum distance as the radius. When colonies were multi-species, we used the radius of the 
species with the largest mean maximum distance. Finally, for more pelagic species, the maximum foraging 
ranges were extraordinarily large (hundreds to thousands of kilometres). Some authors have stated that 
site-based conservation actions are not suitable for highly pelagic species (Oppel et al., 2018). Moreover, 
the foraging radius approach is thought to be more suitable/accurate for less pelagic species (BirdLife 
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International, 2010). Following these recommendations, we eliminated from this part of the analysis those 
species belonging to the families Sulidae and Phaethontidae. 

Ocean Habitats 
The analysis also contains information on the distribution of marine habitats that are of special importance 
for marine organisms and ecosystems. Three habitat types were considered. 

- Mangroves. This dataset was created mostly from satellite imagery and shows the global 
distribution of mangroves. It was produced as a joint initiative of several international 
organizations (Spalding et al., 2010). 

- Coral reefs. This dataset shows the global distribution of coral reefs in tropical and subtropical 
regions. It is the most comprehensive global dataset of warm-water coral reefs to date (UNEP-
WCMC et al., 2021). 

- Seagrasses. This global dataset of seagrass distribution was created from multiple sources (in 128 
countries and territories), including maps (of varying scales), expert interpolation and point-based 
samples (UNEP-WCMC & FT Short, 2021). 

This information is curated by UNEP-WCMC and available through the Ocean Data Viewer on their website 
(https://data.unep-wcmc.org/). 

Overlapping cells with any of these three habitats were given the maximum sensitivity value.  

Marine Protected Areas  
We used the World Database of Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated regularly by governments and curated by UNEP-
WCMC and includes the most up-to-date information on protected areas. For India we used the 2019 
version since some updates on the latest versions were in progress and the dataset was not available. The 
latest version from 2022 was used for the remaining countries. All protected areas classified as coastal or 
marine were included, regardless of their IUCN management category. Cells overlapping with these areas 
automatically received the maximum level of sensitivity. 

Important Bird and Biodiversity Areas (IBAs)  
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. They cover about 6.7% of terrestrial area, 1.6% of marine area and 3.1% 
of the total surface area of the Earth (Donald et al., 2019). This dataset is curated by BirdLife International 
and available through their website (http://datazone.birdlife.org/site). All countries included the most up-
to-date version of this data from 2022 (Birdlife International, 2022). We included all IBAs catalogued as 
marine by BirdLife International plus those coastal IBAs which had ≥5% overlap with the oceans following 
the classification applied in the Sustainable Development Goals (Goal 14.5 - Indicator 14.5.1) (United 
Nations Environment Programme, 2021). A buffer of ~5 km was applied to all IBA polygons to ensure that 
coastal grid cells were properly included. Cells overlapping with a marine or coastal IBA automatically 
received the maximum level of sensitivity. 

 

Identifying final sensitivity categories – STEP 5 
The final sensitivity maps ranged from 0 to 1 and to classify the levels of sensitivity into four categories – 
from low to very high – we used the natural breaks algorithm implemented in ArcGIS Pro (ESRI, 2021). 

  

https://data.unep-wcmc.org/
http://www.protectedplanet.net/
http://datazone.birdlife.org/site/search
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Wind Farm Onshore 

Calculating species sensitivity – STEP 1 
The respective national species lists to be assessed were created in agreement with BirdLife International, 
and bird experts from Nature Kenya, a BirdLife International partner. The sensitivity index was calculated 
for each regularly occurring bird species, excluding flightless, vagrant, rare sightings, and restricted 
seabirds. For Kenya, we calculated the sensitivity index for 990 bird species. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝐶𝑜 + (
𝐷𝑖

5
)) × (𝐶𝑛𝑆)

(1−(
𝑆𝑢+𝐸𝑛

2
)/((

𝑆𝑢+𝐸𝑛
2

)+0.5))

 

 

Collision (Co): To develop a metric that could identify the sensitivity of different taxonomic groups, we used 
a study by Thaxter et al. (2017). In this study, the authors analysed the ecological traits and phylogenetic 
characteristics that make different taxonomic groups more sensitive to collision. They assigned a collision 
probability to most land-bird species worldwide through a modelling approach. Based on the author’s 
recommendations, we summarised this value at the family level based on global number of species 
(average value). After that, we categorised this value in four categories (ranging from 1 and 4). These 
categories were calculated following a natural break classification algorithm, the corresponding values for 
each category were: 1(x < 0.028); 2 (0.028 < x < 0.043); 3 (0.043 < x < 0.059); 4 (x > 0.059). 

Displacement (Di): To classify the displacement, we referred to Hötker (2017), who reviewed all the 
evidence from scientific sources and 148 grey literature reports on displacement in birds to produce a 
metric for European birds. The paper reported the number of times a negative effect (e.g. displacement 
reported to reduce species abundance) or a positive effect or no effect had been found per species and, 
for those groups with enough samples, the statistical significance of this difference (binomial test). To 
produce a relevant metric, we assigned the following values to each species: 1 = Displacement never 
reported; 2 = Displacement reported in at least one study; 3 = Displacement more often reported, but 
differences not statistically significant; 4 = Displacement more often reported and differences statistically 
significant. The whole family received the value of the highest-scoring species included in that family. This 
precautionary approach was taken to ensure that phylogenetically closer species, which are more similar 
and have not been directly studied, could also be evaluated. To complement the assessment regarding bird 
families different from Europe, a systematic review looking for articles published about bird displacement 
was conducted on Web of Science using the terms: ((TS=(“wind*farm*” OR “onshore” OR “offshore” OR 
“wind*turbine*”)) AND TS=(“birds” OR “avian”)) AND TS=(“displacement” OR “avoidance” OR 
“space*use*”) from 2000 to 2024. In total, 24 families had displacement evidence at different levels. 
Accipitridae, Muscicapidae, Scolopacidae, Anatidae, and Charadriidae were the families with the highest 
displacement category. The Supplementary Material contains bird families with their respective 
displacement assessments. 

Conservation Status (CnS) was assigned at the species level using the IUCN Red List categories (2021) as 
follows: 5 = Critically Endangered (CR); 4 = Endangered (EN); 3 = Vulnerable (VU); 2 = Near Threatened (NT); 
1 = Least Concern (LC) or Data Deficient (DD). 

Annual adult survival (Su). We employed annual adult survival calculated for all bird species to include a 
metric that could capture life history factors (Bird et al., 2020). To transform these values into categories 
from 1 to 5, we used a natural breaks classification algorithm implemented in the RStudio package classes 
(Bivand, 2022). The corresponding values for each category were: 1 (x < 0.466); 2 (0.466 ≤ x < 0.559); 3 (0.559 
≤ x < 0.655); 4 (0.655 ≤ x < 0.775); 5 (x > 0.911). 

Endemism (En): We consider the level of endemism for each species as the percentage of the global 
distribution area inside each country’s territory. To calculate this parameter, we used the distribution range 
maps (BirdLife International & The Handbook of the Birds of the World, 2019) and the global database of 

https://naturekenya.org/
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political boundaries GADM (Global Administrative Areas, 2021) in ArcGIS Pro (ESRI, 2023). To transform 
these values into categories from 1 to 5, we used the following conversion criteria: 1 = 0-20%, 2 = >20-40%, 
3 = >40-60%, 4 = >60-80%, 5 = >80-100%. 

To combine the five parameters above in the formula, balancing their contribution to the sensitivity index, 
we standardized all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.321 (See “AVISTEP_Kenya_Onshore.xlsx” in Supplementary Material), 
corresponding to the top ~20% of all species per country. This threshold ensured that the most sensitive 
species were represented. Additionally, conducting workshop with bird experts, we assessed the list, 
uplisting or downlisting species, if necessary, according to their relevance to the national context for bird 
conservation. For Kenya, we included 161 species as priority species regarding the wind farms onshore 
impacts. To produce the final sensitivity scores, we normalised the values to a 0.01 to 1 scale in order to 
emphasise the much greater sensitivity of species in the top part of the list compared to the species at the 
bottom (Critchley & Jessopp, 2019). 

The Supplementary Material contains 161 priority species with their respective information for different 
parameters. 

 

Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide in 100x100m grid cells as 
resolution. The AOH maps represent the utilized habitats within a species’ range and can be considered an 
intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). These maps 
were created using a modelling approach based on remotely sensed land cover data translated to species’ 
habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 2022) and known 
maximum and minimum elevation. The AOH maps were created using binary information representing 
presence and absence, and only based on breeding, non-breeding, and resident distribution (more details 
in https://github.com/BirdLifeInternational/code_for_AOH). A raster layer for each species was created, 
representing the species occurrence probability described by the proportion of area of suitable habitat in 
each grid cell. More specifically, since our assessment was in a 5x5 km grid cell resolution, we transformed 
the original AOH maps to our resolution, calculating the total percentage of AOH present in each cell. We 
also used occurrence points to refine the likelihood of occurring in each grid cell for each species from 
different sources: 1) Local bird experts compiled observational records for their respective countries from 
a range of sources (i.e., published, and unpublished literature, survey and project data, and a range of other 
sources) and 2) eBIRD data. To guarantee the accuracy of the data, we only included recent observations 
(2013 to 2024) that came from eBIRD’s protocol, whether stationary or travelling. The maximum distance 
travelled was set to 7 km to ensure that all records were contained within the final ~ 5x5 km cells. 

Due to the scarcity of observational data for Kenya, we assume the species has a very high probability of 
occurring in a grid cell if it has at least one occurrence of evidence spatially overlapping it. In these cases, 
we upgraded the cell value to the maximum value (=1), regardless of the amount of habitat available in the 
AOH surface. 

For 16 species without AoH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead. We rasterised the polygons into a 5x5 km grid 
resolution. Due to the uncertainty about the occurrence of species in the ranges in their broad scale, we 
weighted all grid cells equally = 0.5, representing the 50% change to have or not the species occurring there. 
We also upgraded the grid cell to a maximum value when a survey point overlaps the raster surface. 

https://github.com/BirdLifeInternational/code_for_AOH
https://ebird.org/
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We adapted the Bradbury et al. (2014) formula to weight the raster for each species by its respective 
sensitivity index and amount of habitat in each grid cell. The final species sensitivity value (SI) was assigned 
for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ln(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty 
To provide information about the species’ presence likelihood, we created a metric combining the amount 
of AOH and the confirmed presence of the species in each grid cell. This categorical parameter has values 
ranging from 1 to 4 and reflects the evidence of the presence of the species in that grid cell. The 
correspondence of the categories follows: 

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based just on the BirdLife range maps, we created a comparable classification 
based on the information available for those species. On these occasions, we gave the range area a generic 
value of 1 (low occurrence certainty) and a value of 3 (high occurrence certainty) to those grid cells where 
surveys confirmed the species’ presence. 

 

Creating multispecies combination map – STEP 3 
We created a multispecies combination map by summing up all species-specific sensitivity maps. For 
Kenya, we combined 161 priority species’ rasters. Thus, the final score for each grid cell is the result of the 
summed values of all the species present in that cell. The bird sensitivity map captures the cumulative 
impact over the range of species present in each area. To make these maps comparable with the rest of the 
sources of information, we normalised the values from 0 to 1. 

∑ ln

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

** Distribution lines considered maps from Collision and Electrocution, combining them and conserving 
the maximum value in each grid cell. That means if a grid cell has a value of 1 for electrocution but 0.5 for 
collision, the final grid cell value is 1. 

 

Adding other important areas for bird conservation – STEP 4 
Land Cover/Land Use 
To limit the impact of renewable energy, it is important to target development away from natural habitats 
and towards areas with low ecological value, such as those already highly modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we used the Copernicus global land-cover and the discrete land cover 
classification, which includes 23 classes at a ~100 m spatial resolution (Buchhorn et al., 2020). We chose 
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to use this dataset for its high accuracy (average ~80%) and its suitability for conservation (Jung et al., 
2020). First, we reclassified all land cover classes to have a value of 1 except for cropland and urban/built 
up areas which received a value of 0. We then calculated the percentage of natural areas present in each 
5x5 km cell following a similar procedure as for distribution areas. In our scoring, cells with a higher 
percentage of natural areas will result in a higher sensitivity score. We combined the resulting land cover 
proxy map with the species cumulative map (step 3) using a Multicriteria Analysis (MCA) (Adem Esmail & 
Geneletti, 2018), weighting land cover proxy and species sensitivity according to bird expert opinion. So, 
land cover was weighted as 0.2 (contributing with 20% for the final layer) and priority species sensitivity as 
0.8 (contributing with 80% for the final layer). This final outcome was then normalised between zero and 1. 

Important Bird and Biodiveristy Areas (IBAs) 
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. This dataset is curated by BirdLife International and available through 
website (https://datazone.birdlife.org/country/factsheet/kenya). The most up-to-date version of this data 
was used (BirdLife International, 2024a). In some instances, proposed IBAs and areas not identified as IBAs 
but nonetheless known to be of global significance for at-risk bird species were also included. Cells 
overlapping with these areas received the maximum value of sensitivity. 

Protected Areas 
We used the World Database on Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated by governments and curated by the UN Environment 
Programme World Conservation Monitoring Centre (UNEP-WCMC) and includes the most up-to-date 
information on protected areas. We used the latest version from 2024. All protected areas were included 
for Kenya, regardless of their IUCN management category. As with IBAs, cells overlapping with these areas 
automatically received the maximum level of sensitivity. 

 

Identifying final sensitivity categories – STEP 5 
We categorised geographical sensitivity by applying the Jenk’s Natural Breaks algorithm (Natural breaks 
function, ArcGIS Pro (ESRI, 2023)) to identify four categories, which we interpret as Low, Medium, High, and 
Very High bird sensitivity. Natural Breaks minimize the squared deviations of a group’s means and are a 
standard method for splitting spatial datasets. This produced a final bird sensitivity map in a format that 
provides meaningful visualization and is easier to interpret for a range of stakeholders in decision-making 
processes. 

 

Power Line – High voltage 

Calculating species sensitivity – STEP 1 
The sensitivity index was calculated for each regularly occurring bird species, excluding flightless, vagrant, 
rare sightings, and restricted seabirds. For Kenya, we calculated the sensitivity index for 990 bird species. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐶𝑜) × (𝐶𝑛𝑆)
(1−(

(𝑆𝑢+𝐸𝑛)
2

)/((
(𝑆𝑢+𝐸𝑛)

2
)+0.5))

 

 

Collision with energy cables (PwCo). Bird collisions occur during flight when birds fail to see the overhead 
wires. They represent a significant source of anthropogenic bird mortality (Loss et al., 2014) and are 
responsible for the decline of different populations (Biasotto & Kindel, 2018). Bird-related taxa typically 
show similar levels of sensitivity to collisions since they have a strong phylogenetic signal (Prinsen et al., 
2011). 

https://datazone.birdlife.org/country/factsheet/kenya
http://www.protectedplanet.net/
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To assess the species’ sensitivity to overhead collision, we used three main published reviews from Africa 
and Eurasia (Haas et al., 2003; Martín Martín et al., 2019; Prinsen et al., 2011). These reviews provide a 
classification at the family level of the main avifauna affected by collision. Four broad categories were used 
to measure sensitivity: Category I = casualties reported, but no apparent threat to the bird population. 
Category II = regionally or locally high casualties, but with no significant impact on the overall species 
population. Category III = casualties are a major mortality factor, threatening a species with extinction, 
regionally or at a larger scale. To complement the assessment regarding global bird families, a systematic 
review looking for articles published about bird collisions with power lines was conducted on Web of 
Science. Slight differences were found in the classification for certain families, so we included each family 
in the following subcategories: 6 (III) = casualties are a major mortality factor, threatening a species with 
extinction, regionally or at a larger scale. 5 (between category II and III). 4 (II) regionally or locally high 
casualties, but with no significant impact on the overall species population. 3 (between category II and I). 
2 (I) casualties reported, but no apparent threat to the bird population. 1 No casualties reported or likely. 
The Supplementary Material contains bird families with their respective assessments. 

Conservation status (CnS), endemism (En), and annual adult survival (Su) were calculated in the same way 
as for the onshore wind sensitivity index. 

To combine the parameters in the formula and balance their contribution to the sensitivity index, we 
standardized all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.244 (see “AVISTEP_Kenya_PW_Collision.xlsx” in Supplementary 
Material), corresponding to the top ~20% of all species per country. This threshold ensured that the most 
sensitive species were represented. Additionally, conducting workshop with local bird experts, we 
assessed the list, uplisting or downlisting species, if necessary, according to their relevance to the national 
context for bird conservation. For Kenya, we included 152 species as priority species regarding the collision 
with power lines. To produce the final sensitivity scores, we normalised the values to a 0.01 to 1 scale in 
order to emphasise the much greater sensitivity of species in the top part of the list compared to the 
species at the bottom (Critchley & Jessopp, 2019). 

The Supplementary Material contains 152 priority species with their respective information for different 
parameters. 

 

Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide in 100x100m grid cells as 
resolution. The AOH maps represent the utilized habitats within a species’ range and can be considered an 
intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). These maps 
were created using a modelling approach based on remotely sensed land cover data translated to species’ 
habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 2022) and known 
maximum and minimum elevation. The AOH maps were created using binary information representing 
presence and absence, and only based on breeding, non-breeding, and resident distribution (more details 
in https://github.com/BirdLifeInternational/code_for_AOH). A raster layer for each species was created, 
representing the species occurrence probability described by the proportion of area of suitable habitat in 
each grid cell. More specifically, since our assessment was in a 5x5 km grid cell resolution, we transformed 
the original AOH maps to our resolution, calculating the total percentage of AOH present in each cell. We 
also used occurrence points to refine the likelihood of occurring in each grid cell for each species from 
different sources: 1) Local bird experts compiled observational records for their respective countries from 
a range of sources (i.e., published, and unpublished literature, survey and project data, and a range of other 
sources) and 2) eBIRD data (https://ebird.org). To download and curate the datasets, we used the RStudio 

https://github.com/BirdLifeInternational/code_for_AOH
https://ebird.org/
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package auk (Strimas-Mackey et al., 2018). To guarantee the accuracy of the data, we only included recent 
observations (2013 to 2024) that came from eBIRD’s protocol, whether stationary or travelling. The 
maximum distance travelled was set to 7 km to ensure that all records were contained within the final ~ 
5x5 km cells. 

Due to the scarcity of observational data for Kenya, we assume the species has a very high probability of 
occurring in a grid cell if it has at least one occurrence of evidence spatially overlapping it. In these cases, 
we upgraded the cell value to the maximum value (=1), regardless of the amount of habitat available in the 
AOH surface. 

For 14 species without AoH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead. We rasterised the polygons in a 5x5 km grid resolution. 
Due to the uncertainty about the occurrence of species in the ranges in their broad scale, we weighted all 
grid cells equally = 0.5, representing the 50% change to have or not the species occurring there. We also 
upgraded the grid cell to a maximum value when a survey point overlaps the raster surface. 

We adapted the Bradbury et al. (2014) formula to weight the raster for each species by its respective 
sensitivity index and amount of habitat in each grid cell. The final species sensitivity value (SI) was assigned 
for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ln(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty 
To provide information about the species’ presence likelihood, we created a metric combining the amount 
of AOH and the confirmed presence of the species in each grid cell. This categorical parameter has values 
ranging from 1 to 4 and reflects the evidence of the presence of the species in that grid cell. The 
correspondence of the categories follows: 

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based just on the BirdLife range maps, we created a comparable classification 
based on the information available for those species. On these occasions, we gave the range area a generic 
value of 1 (low occurrence certainty) and a value of 3 (high occurrence certainty) to those grid cells where 
surveys confirmed the species’ presence. 

 

Creating multispecies combination map – STEP 3 
We created a multispecies combination map by summing up all species-specific sensitivity maps. For 
Kenya, we combined 152 priority species’ rasters. Thus, the final score for each grid cell is the result of the 
summed values of all the species present in that cell. The bird sensitivity map captures the cumulative 
impact over the range of species present in each area. To make these maps comparable with the rest of the 
sources of information, we normalised the values from 0 to 1. 
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∑ ln

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼 

 

Adding other important areas for bird conservation – STEP 4 
Land Cover Land Use 
To limit the impact of renewable energy, it is important to target development away from natural habitats 
and towards areas with low ecological value, such as those already highly modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we used the Copernicus global land-cover and the discrete land cover 
classification, which includes 23 classes at a ~100 m spatial resolution (Buchhorn et al., 2020). We chose 
to use this dataset for its high accuracy (average ~80%) and its suitability for conservation (Jung et al., 
2020). First, we reclassified all land cover classes to have a value of 1 except for cropland and urban/built 
up areas which received a value of 0. We then calculated the percentage of natural areas present in each 
5x5 km cell following a similar procedure as for distribution areas. In our scoring, cells with a higher 
percentage of natural areas will result in a higher sensitivity score. We combined the resulting land cover 
proxy map with the species cumulative map (step 3) using a Multicriteria Analysis (MCA) (Adem Esmail & 
Geneletti, 2018), weighting land cover proxy and species sensitivity according to bird expert opinion. So, 
land cover was weighted as 0.2 (contributing with 20% for the final layer) and priority species sensitivity as 
0.8 (contributing with 80% for the final layer. This final outcome was then normalised between zero and 1. 

Important Bird and Biodiversity Areas (IBAs) 
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. This dataset is curated by BirdLife International and available through 
website (https://datazone.birdlife.org/country/factsheet/kenya). The most up-to-date version of this data 
was used (BirdLife International, 2024a). In some instances, proposed IBAs and areas not identified as IBAs 
but nonetheless known to be of global significance for at-risk bird species were also included. Cells 
overlapping with these areas received the maximum value of sensitivity. 

Protected Areas 
We used the World Database on Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated by governments and curated by the UN Environment 
Programme World Conservation Monitoring Centre (UNEP-WCMC) and includes the most up-to-date 
information on protected areas. We used the latest version from 2024. All protected areas were included 
for Kenya, regardless of their IUCN management category. As with IBAs, cells overlapping with these areas 
automatically received the maximum level of sensitivity. 

 

Identifying final sensitivity categories – STEP 5 
We categorised geographical sensitivity by applying the Jenk’s Natural Breaks algorithm (Natural breaks 
function, ArcGIS Pro (ESRI, 2023)) to identify four categories, which we interpret as Low, Medium, High, and 
Very High bird sensitivity. Natural Breaks minimize the squared deviations of a group’s means and are a 
standard method for splitting spatial datasets. This produced a final bird sensitivity map in a format that 
provides meaningful visualization and is easier to interpret for a range of stakeholders in decision-making 
processes. 

 

https://datazone.birdlife.org/country/factsheet/kenya
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Power Line – Medium and Low voltage 

Calculating species sensitivity – STEP 1 
Distribution lines impact birds mainly through collision with overhead cables and electrocution on energy 
pylons. Therefore, in addition to considering the species most sensitive to collision using the formula 
mentioned for the High-voltage lines (PwCo), a specific formula for calculating and identifying species 
sensitive to electrocution was also applied separately: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐸𝑙𝑒𝑐) × (𝐶𝑛𝑆)
(1−(

(𝑆𝑢+𝐸𝑛)
2

)/((
(𝑆𝑢+𝐸𝑛)

2
)+0.5))

 

 

To assess the species’ sensitivity to electrocution, we used three main published reviews from Africa and 
Eurasia (Haas et al., 2003; Martín Martín et al., 2019; Prinsen et al., 2011). These reviews provide a 
classification at the family level of the main avifauna affected by electrical shock. Four broad categories 
were used to measure sensitivity: Category I = casualties reported, but no apparent threat to the bird 
population. Category II = regionally or locally high casualties, but with no significant impact on the overall 
species population. Category III = casualties are a major mortality factor, threatening a species with 
extinction, regionally or at a larger scale. To complement the assessment regarding global bird families, a 
systematic review looking for articles published about bird electrocutions with power lines was conducted 
on Web of Science. Slight differences were found in the classification for certain families, so we included 
each family in the following subcategories: 6 (III) = casualties are a major mortality factor, threatening a 
species with extinction, regionally or at a larger scale. 5 (between category II and III). 4 (II) regionally or 
locally high casualties, but with no significant impact on the overall species population. 3 (between 
category II and I). 2 (I) casualties reported, but no apparent threat to the bird population. 1 No casualties 
reported or likely. The Supplementary Material contains bird families with their respective assessments. 

Conservation status (CnS), endemism (En), and annual adult survival (Su) were calculated in the same way 
as for the onshore wind sensitivity index. 

To combine the parameters above in the formula and balance their contribution to the sensitivity index, we 
standardized all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.17 (see “AVISTEP_Kenya_PW_Electrocution.xlsx” in Supplementary 
Material), corresponding to the top ~20% of all species per country. This threshold ensured that the most 
sensitive species were represented. Additionally, conducting workshop with local bird experts, we 
assessed the list, uplisting or downlisting species, if necessary, according to their relevance to the national 
context for bird conservation. For Kenya, we included 149 species as priority species regarding the 
electrocution with power lines. To produce the final sensitivity scores, we normalised the values to a 0.01 
to 1 scale in order to emphasise the much greater sensitivity of species in the top part of the list compared 
to the species at the bottom (Critchley & Jessopp, 2019). 

The Supplementary Material contains 149 priority species with their respective information for different 
parameters. 

 

Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide in 100x100m grid cells as 
resolution. The AOH maps represent the utilized habitats within a species’ range and can be considered an 
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intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). These maps 
were created using a modelling approach based on remotely sensed land cover data translated to species’ 
habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 2022) and known 
maximum and minimum elevation. The AOH maps were created using binary information representing 
presence and absence, and only based on breeding, non-breeding, and resident distribution (more details 
in https://github.com/BirdLifeInternational/code_for_AOH). A raster layer for each species was created, 
representing the species occurrence probability described by the proportion of area of suitable habitat in 
each grid cell. More specifically, since our assessment was in a 5x5 km grid cell resolution, we transformed 
the original AOH maps to our resolution, calculating the total percentage of AOH present in each cell. We 
also used occurrence points to refine the likelihood of occurring in each grid cell for each species from 
different sources: 1) Local bird experts compiled observational records for their respective countries from 
a range of sources (i.e., published, and unpublished literature, survey and project data, and a range of other 
sources) and 2) eBIRD data (https://ebird.org). To download and curate the datasets, we used the RStudio 
package auk (Strimas-Mackey et al., 2018). To guarantee the accuracy of the data, we only included recent 
observations (2013 to 2024) that came from eBIRD’s protocol, whether stationary or travelling. The 
maximum distance travelled was set to 7 km to ensure that all records were contained within the final ~ 
5x5 km cells. Due to the scarcity of observational data for Kenya, we assume the species has a very high 
probability of occurring in a grid cell if it has at least one occurrence of evidence spatially overlapping it. In 
these cases, we upgraded the cell value to the maximum value (=1), regardless of the amount of habitat 
available in the AOH surface. 

For 6 species without AoH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead. We rasterised the polygons in a 5x5 km grid resolution. 
Due to the uncertainty about the occurrence of species in the ranges in their broad scale, we weighted all 
grid cells equally = 0.5, representing the 50% change to have or not the species occurring there. We also 
upgraded the grid cell to a maximum value when a survey point overlaps the raster surface. We adapted 
the Bradbury et al. (2014) formula to weight the raster for each species by its respective sensitivity index 
and amount of habitat in each grid cell. The final species sensitivity value (SI) was assigned for each grid 
cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ln(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty 
To provide information about the species’ presence likelihood, we created a metric combining the amount 
of AOH and the confirmed presence of the species in each grid cell. This categorical parameter has values 
ranging from 1 to 4 and reflects the evidence of the presence of the species in that grid cell. The 
correspondence of the categories follows: 

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based just on the BirdLife range maps, we created a comparable classification 
based on the information available for those species. On these occasions, we gave the range area a generic 
value of 1 (low occurrence certainty) and a value of 3 (high occurrence certainty) to those grid cells where 
surveys confirmed the species’ presence. 

https://github.com/BirdLifeInternational/code_for_AOH
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Creating multispecies combination map – STEP 3 
We created a multispecies combination map by summing up all species-specific sensitivity maps. We 
create one map specific for collision (combining 152 species) and another for electrocution (combining 
149 species). Thus, the final score for each grid cell is the result of the summed values of all the species 
present in that cell. The bird sensitivity map captures the cumulative impact over the range of species 
present in each area. To make these maps comparable with the rest of the sources of information, we 
normalised the values from 0 to 1. 

∑ ln

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼 

** Distribution lines considered maps from Collision and Electrocution, combining them and conserving 
the maximum value in each grid cell. That means if a grid cell has a value of 1 for electrocution but 0.5 for 
collision, the final grid cell value is 1. 

 

Adding other important areas for bird conservation – STEP 4 
Land Cover Land Use 
To limit the impact of renewable energy, it is important to target development away from natural habitats 
and towards areas with low ecological value, such as those already highly modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we used the Copernicus global land-cover and the discrete land cover 
classification, which includes 23 classes at a ~100 m spatial resolution (Buchhorn et al., 2020). We chose 
to use this dataset for its high accuracy (average ~80%) and its suitability for conservation (Jung et al., 
2020). First, we reclassified all land cover classes to have a value of 1 except for cropland and urban/built 
up areas which received a value of 0. We then calculated the percentage of natural areas present in each 
5x5 km cell following a similar procedure as for distribution areas. In our scoring, cells with a higher 
percentage of natural areas will result in a higher sensitivity score. We combined the resulting land cover 
proxy map with the species cumulative map (step 3) using a Multicriteria Analysis (MCA) (Adem Esmail & 
Geneletti, 2018), weighting land cover proxy and species sensitivity according to bird expert opinion. So, 
land cover was weighted as 0.2 (contributing with 20% for the final layer) and priority species sensitivity 
(the maps merging collision and electrocution) as 0.8 (contributing with 80% for the final layer. This final 
outcome was then normalised between zero and 1. 

Important Bird and Biodiversity Areas (IBAs) 
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. This dataset is curated by BirdLife International and available through 
website (https://datazone.birdlife.org/country/factsheet/kenya). The most up-to-date version of this data 
was used (BirdLife International, 2024a). In some instances, proposed IBAs and areas not identified as IBAs 
but nonetheless known to be of global significance for at-risk bird species were also included. Cells 
overlapping with these areas received the maximum value of sensitivity. 

Protected Areas 
We used the World Database on Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated by governments and curated by the UN Environment 
Programme World Conservation Monitoring Centre (UNEP-WCMC) and includes the most up-to-date 
information on protected areas. We used the latest version from 2024. All protected areas were included 
for Kenya, regardless of their IUCN management category. As with IBAs, cells overlapping with these areas 
automatically received the maximum level of sensitivity. 

https://datazone.birdlife.org/country/factsheet/kenya
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Identifying final sensitivity categories – STEP 5 
We categorised geographical sensitivity by applying the Jenk’s Natural Breaks algorithm (Natural breaks 
function, ArcGIS Pro (ESRI, 2023)) to identify four categories, which we interpret as Low, Medium, High, and 
Very High bird sensitivity. Natural Breaks minimize the squared deviations of a group’s means and are a 
standard method for splitting spatial datasets. This produced a final bird sensitivity map in a format that 
provides meaningful visualization and is easier to interpret for a range of stakeholders in decision-making 
processes. 

 

Solar Photovoltaic (PV) 

Calculating Sensitivity for all species occurring in the country – STEP 1 
The species-specific sensitivity based on different impacts created for the other types of energy 
developments does not apply to the context of solar photovoltaic energy. We have used a precautionary 
approach, considering that the presence of solar photovoltaics would result in habitat loss and/or 
degradation for all species that occur in the area, although some species can indeed coexist with solar PV 
installations. 

We considered a list of all species occurring in the country, individually weighted by their respective 
Conservation Status (CnS - primary factor) and Endemicity (En - aggravating factor). For Kenya, we worked 
with 990 species in total. 

Conservation Status (CnS): We used the IUCN Red List categories from 2021 as follows: 5 = Critically 
Endangered (CR); 4 = Endangered (EN); 3 = Vulnerable (VU); 2 = Near Threatened (NT); 1 = Least Concern 
(LC) or Data Deficient (DD). 

Endemism (En): We calculated the percentage of the global distribution area inside each country’s 
territory. To calculate this parameter, we used the distribution range maps (BirdLife International & The 
Handbook of the Birds of the World, 2019) and the global database of political boundaries GADM (Global 
Administrative Areas, 2021) in ArcGIS Pro (ESRI, 2023). To transform these values into categories from 1 to 
5, we used the following conversion criteria: 1 = 0-20%, 2 = > 20-40%, 3 = > 40-60%, 4 = > 60-80%, 5 = > 80-
100%. To standardise all metrics and make them comparable, we divided each by the maximum category 
value following recommendations from Certain et al. (2015). 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (𝐶𝑛𝑆)(1−(𝐸𝑛)/((𝐸𝑛)+0.5)) 

 

Mapping the species distribution according to the Sensitivity – STEP 2 
We used the BirdLife range maps to create a raster layer for the 990 species with a 5x5 km grid cell 
resolution. The respective species sensitivity value weighted each raster surface. 

 

Creating a species richness map – STEP 3 
To create a surface representing the cumulative sensitivity (hereinafter bird richness). we summed all the 
raster in the same grid cell following the formula 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ∑ (𝐶𝑛𝑆)(1−(𝐸𝑛)/((𝐸𝑛)+0.5))

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

 



61 
 

Creating a layer with potential wilderness areas and adding important 
areas for bird conservation – STEP 4 
To identify zones where the development of solar farms may negatively impact biodiversity, we combined 
the bird richness surface with a human footprint surface (used as a proxy to infer wilderness). Accordingly, 
areas far from the site with high value for the human footprint index (population density, built infrastructure 
such as roads, railways, factories, and night-time lights) would be less exposed to disturbance (Ascensão 
et al., 2023) and, therefore, consist of more relevant areas for bird conservation. We used HFI second 
generation of information with 300 m2 as resolution from https://wcshumanfootprint.org/ (data-access 
31/10/2023). 

The bird richness surface was combined with the human footprint surface, both calculated in 5x5 km using 
Multicriteria Analysis. The human footprint surface was weighted as 0.4 (contributing with 40% for the final 
layer) and the bird richness sensitivity as 0.6 (contributing with 60% for the final layer). This final outcome 
was then normalised between zero and 1. 

The information for protected areas and IBAs was the same as previously used. To create the final 
sensitivity maps, we combined these datasets by retaining the maximum value from all overlapping cells. 
In this way, cells designated as IBAs and protected areas automatically received the maximum level of 
sensitivity (1), while all other cells will vary between 0 and 1 depending on their percentage on the trade-off 
between bird richness and human footprint layer. 

 

Identifying final sensitivity categories – STEP 5 
We categorized sensitivity by applying Jenk’s Natural Breaks algorithm to identify four categories, which we 
interpret as Low, Moderate, High, and Very High bird sensitivity. This produced a final and continuous bird 
sensitivity map in a format that is easier to understand and could be used by a range of stakeholders in 
decision-making processes. 

 

Offshore Wind 

Delineate Area of Interest (AOI) – STEP 1 
The first step in our offshore sensitivity analysis was delineating our Area of Interest (AOI). The offshore 
limits of the analysis (AOI) were set to the extent of the Exclusive Economic Zone (EEZ) in Kenya. This is 
done to facilitate incorporating the sensitivity map into future discussions about marine spatial planning 
and management of activities in the EEZ.  

 

Identifying Species for Analysis – STEP 2  
Collating the seabird species list for the AOI of a region is a process that we validate with local partners and 
experts where available. The flow chart below shows the range of sources we consider before a species is 
ultimately included or excluded.  

For Kenya, all available range maps for species overlapping with the EEZ were considered. A literature 
review was carried out along with a review of available observation records (for example, eBird) to 
determine any additional species to be considered. Some birds listed as seabirds can exhibit both marine 
and onshore activity in their ranges (for example, species such as Cormorants, Terns and Grebes). For these 
groups, their distribution was checked within the AOI. In total, 38 species were identified for the offshore 
sensitivity analysis in Kenya.  

https://wcshumanfootprint.org/


62 
 

  

Figure 1: Flowchart of the decision-making process for seabird species selection in AVISTEP offshore analysis. The 
process starts with key sources (in red), additional corroborating sources are in yellow, country-specific distribution 
requirements are in blue. The process ends with a species being included or excluded from the species list.  

 

Calculating Sensitivity for all Selected Species– STEP 3 
Following the identification of species for analysis, sensitivity was calculated for all listed species. We 
estimated the individual risk factors collision (Co) and displacement (Di), along with the conservation 
status (CnS). Using a trait-based approach, estimated a level of sensitivity for individual species. As with 
previous projects, collision and displacement were calculated separately for offshore (Furness et al., 
2013). These were combined with a conservation score (CnS) to create an overall sensitivity to both 
collision and displacement. 

For each risk, all contributing factors were divided into primary and aggravating factors. Primary factors are 
inherently risky behaviour, traits, or demographic parameters that directly contribute to a species’ 
sensitivity. Aggravating factors exacerbate an existing risk but have no inherent risk of their own (Certain et 
al., 2015).  

We used a modified version of the sensitivity index developed by Certain et al. (2015) for sensitivity mapping 
in relation to offshore energy. This methodology has been used in similar exercises for Ireland (Critchley & 
Jessopp, 2019b) and Scotland (Searle et al., 2019). In turn, this index is a renewed version of one created 
by Garthe & Hüppop (2004) who pioneered this field of work. The main innovation of this methodology is 
the differentiation between primary and aggravation factors. Primary factors are species characteristics 
that directly control the vulnerability, while aggravation factors are those that can increase a vulnerability 
that already exists (Certain et al., 2015). These differences between factors are therefore incorporated in 
the mathematical formulation of the indices. Although we mostly based our work on this methodology, we 
incorporated concepts, information and methods from other works like Bradbury et al. (2014), Furness et 
al. (2013), and Kelsey et al. (2018). Moreover, most of the information for scoring the different parameters 
by species came from Bradbury et al. (2014), Certain et al. (2015), Critchley & Jessopp (2019), Furness et 
al. (2013), Kelsey et al. (2018) and, Robinson Willmott et al. (2013). When we could not find information 
from these sources, we conducted a literature review to extract the necessary information. If no 
information was available to estimate a metric value for a given species, we used data from similar species. 
Finally, when several sources disagreed, we used the most recent values. Information about parameter 
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values and sources of information can be found in “AVISTEP_Kenya_Offshore.xlsx” in Supplementary 
Material. 

Two different sensitivity indices were created: 

 

 

Percentage of time flying at blade height (A1). This parameter is directly related to the species flight 
height, and it is one of the main factors influencing collision. The height range selected to represent the 
blade height was 20-150 meters. We assigned values from 1 to 5 where:  

- 1 = 0 – 5%  
- 2 = > 5 – 10%  
- 3 = > 10 – 15%  
- 4 = > 15 – 20%  
- 5 = > 20 – 100%  

Percentage of time spent flying (A2). Percentage of time in flight during a complete day (24h; day and 
night). Robinson Willmott et al., 2013 and Kelsey et al., 2018 did not include this specific parameter, but 
instead they calculated diurnal flight activity and nocturnal flight activity separately. To use these sources, 
we calculated the average of the nocturnal and diurnal flying activity. We assigned values from 1 to 5 where:  

- 1 = 0 – 20%  
- 2 = > 20 – 40%  
- 3 = > 40 – 60%  
- 4 = > 60 – 80%  
- 5 = > 80 – 100%  

Flight Manoeuvrability (FM) & Nocturnal Activity (Noc): Once flying at a dangerous height, there are 
factors that may impact an individual’s ability to avoid possible collision. Based on previous work on 
collision sensitivity factors (Garthe & Hüppop, 2004; Furness et al. 2013; Bradbury et al. 2014; Certain et 
al. 2015), flight manoeuvrability and nocturnal activity were identified as aggravating factors to exposure. 
The application of aggravating factors assumes that, when all other factors are equal, a less manoeuvrable 
species or a species that is very active at night may be more vulnerable to collision than other species. 
When combining factors, how they interact determines how best to include them. As nocturnal activity and 
flight manoeuvrability are considered to aggravate the risk of flying near offshore turbines, we consider 
them as interactive with the exposure risk values for each species. Therefore, this factor is multiplied by 
the risk of exposure to rotor blades. Since we have no evidence that manoeuvrability and nocturnal activity 
interact dependently in relation to collision risk, we are using the average between the two to create an 
aggravated risk score to apply to exposure (Certain et al. 2015).   

  

Nocturnal flight activity (A3). Percentage of time in flight during night. We assigned values from 1 to 5 
where:  

- 1 = 0 – 20%  
- 2 = > 20 – 40%  
- 3 = > 40 – 60%  
- 4 = > 60 – 80%  
- 5 = > 80 – 100%  
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Flight manoeuvrability (A4). Aerial agility of species and hence their potential to micro-avoid collision with 
wind turbines at sea. We assigned values from 1 to 5 where:  

- 1 (very high manoeuvrability) to 5 (very low manoeuvrability)  

Where there are three primary factors: B1 = disturbance by vessels & helicopters, B2 = disturbance by 
structures, and CnS = conservation status, and two aggravation factors: B3 = habitat flexibility, and Su = 
annual adult survival.  

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥

= ((𝐵1 + 𝐵2)/2)(1 − (𝐵3)/(𝐵3) + 0.5) × 𝐶𝑛𝑆(1 − 𝑆𝑢)/(𝑆𝑢 + 0.5) 

 

A detailed explanation of the different metrics employed is as follows:  

Disturbance by vessels & helicopters (B1). This parameter measures the escape response produced by 
vessel and helicopter traffic.  

- From 1 (low disturbance response) to 5 (high disturbance response)  

Some authors do not distinguish between disturbance produced by fixed structures and marine traffic. 
However, since marine traffic (i.e., vessels and helicopters) is expected to increase during construction and 
operation of offshore wind farms, we included them separately. For some species we did not find 
information about both disturbance types, but only for fixed structures; on those occasions, we scored 
both parameters equally.  

Disturbance by structures (B2). Macro-avoidance behaviour from fixed structures on the sea (i.e., 
offshore wind farms) and possible displacement from areas under the influence of these structures.  

- From 1 (low disturbance response) to 5 (high disturbance response)  

Habitat flexibility (B3). Ability of the species to feed on a variety of food sources and/or forage within 
multiple habitat types, or if, on the contrary, the species is restricted in their diet and/or forages in very 
particular habitats.  

- From 1 (high habitat flexibility) to 5 (low habitat flexibility)  

To standardise all metrics and make them comparable, we divided each on them by the maximum category 
value following recommendations from Certain et al. (2015). 

 

Mapping distribution for all seabird species– STEP 4 
Species distribution  
For species geographical distributions, we used distribution range maps (BirdLife International and The 
Handbook of the Birds of the World, 2019). Some species did not have the marine part of their range 
included in the range map within the study area. For these species, we searched the literature for the 
offshore foraging range for the species and used this to buffer from the terrestrial part of the species range. 
Range maps for all species were rasterised at a 5x5km grid for breeding and non-breeding/passage ranges 
separately, included resident species in both the breeding and non-breeding maps.  

Sensitivity map calculation  
Following the same methodology we used for onshore wind energy, we first transferred the sensitivity 
indices values per species to their geographic distribution, making this value spatially explicit in a ~ 5x5 km 
grid cell. We then overlapped all the species geographic distributions by season and added the sensitivity 
values from all the species. Thus, the final score for each cell was the result of the summed values of all 
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the species present in that cell. We did this separately for the breeding and non-breeding seasons for both 
collision and displacement sensitivity index; thus, four different maps were created, two for collision and 
two for displacement. To make these maps comparable with the rest of sources of information, we divided 
the values by the maximum so that the highest values from each map was 1. We then overlapped the four 
maps so that the final score of each cell was the maximum value. In this way, we ensured that the final 
sensitivity score for an area was calculated based on the most sensitive species present, regardless of the 
type of impact.  

 

Additional Areas 

Important Bird and Biodiversity Areas (IBAs)  
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. They cover about 6.7% of terrestrial area, 1.6% of marine area and 3.1% 
of the total surface area of the Earth (Donald et al., 2019). This dataset is curated by BirdLife International 
and available through their website (http://datazone.birdlife.org/site). All countries included the most up-
to-date version of this data from 2024 (Birdlife International, 2024b). We included all IBAs catalogued as 
marine by BirdLife International plus those coastal IBAs which had ≥5% overlap with the oceans following 
the classification applied in the Sustainable Development Goals (Goal 14.5 - Indicator 14.5.1) (United 
Nations Environment Programme, 2021). Cells overlapping with a marine or coastal IBA received the 
maximum level of sensitivity. A buffer of ~5 km was applied at value of 0.5 to all IBA polygons with breeding 
seabirds as trigger species to account for foraging movements out of the IBA boundaries. For Kenya, these 
sites were: Kisite island - Marine, Kiunga Marine National Reserve, Sabaki River Mouth, Mida Creek, and 
Whale Island and the Malindi - Watamu coast. 

 

 Categorising Sensitivity– STEP 6  
Once the preliminary species sensitivity result layer was produced, we categorised the results our 
categories of low-high sensitivity. This was a classed raster with all cells values from 1 to 4 (green to red). 
This was done using Jenks natural breaks in the ClassInt package in R (Bivand et al., 2022). 

 

 Adding Other Important Areas for Birds and Conservation– STEP 7 
As with onshore, areas that were determined to be key concern for bird conservation were included in our 
analysis for offshore wind. Shapefiles of selected areas were overlapped with the project fishnet and 
overlapping cells were rasterised to match the 5x5 km project grid. For Kenya these areas included oceanic 
habitats, Marine Protected Areas (MPAs) and Important Bird and Biodiversity Areas (IBAs) These areas were 
added at the highest sensitivity. As these were added after the classification of sensitivity using Jenks 
natural breaks, they did not impact on the relative sensitivity of nearby cells. 

Ocean habitats  
The analysis also contains information on the distribution of marine habitats that are of special importance 
for marine organisms and ecosystems. Overlapping cells with any of these habitats were given the 
maximum sensitivity value. For Egypt, three habitat types were considered.  

- Mangroves. This dataset was created mostly from satellite imagery and shows the global distribution of 
mangroves. It was produced as a joint initiative of several international organizations (Spalding et al., 2010).  

- Coral reefs. This dataset shows the global distribution of coral reefs in tropical and subtropical regions. It 
is the most comprehensive global dataset of warm-water coral reefs to date (UNEP-WCMC et al., 2021).  

http://datazone.birdlife.org/site
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- Seagrasses. This global dataset of seagrass distribution was created from multiple sources (in 128 
countries and territories), including maps (of varying scales), expert interpolation and point-based samples 
(UNEP-WCMC & FT Short, 2021).  

This information is curated by UNEP-WCMC and available through the Ocean Data Viewer on their website 
(https://data.unep-wcmc.org/).  

Overlapping cells with any of these three habitats were given the maximum sensitivity value. 

 Marine Protected Areas 
Marine protected areas are sites designated for the conservation of marine habitats, species and 
ecosystems. Kenya has just over 5% of its marine environment designated as MPAs 
(www.protectedplanet.net). These were included in our offshore sensitivity analysis at the highest level of 
sensitivity. We used the World Database of Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated regularly by governments and curated by UNEP-
WCMC and includes the most up-to-date information on protected areas. The latest version from 2024 was 
used for Kenya. All protected areas classified as coastal or marine were included, regardless of their IUCN 
management category. Cells overlapping with these areas automatically received the maximum level of 
sensitivity. 

  

https://data.unep-wcmc.org/
http://www.protectedplanet.net/
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Wind Farm Onshore 

Calculating species sensitivity – STEP 1 
The respective national species lists to be assessed were created in agreement with BirdLife International, 
and bird experts in Lao. The sensitivity index was calculated for each regularly occurring bird species, 
excluding flightless, vagrant, rare sightings, and restricted seabirds. For Lao, we calculated the sensitivity 
index for 724 bird species. 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝐶𝑜 + (
𝐷𝑖

5
)) × (𝐶𝑛𝑆)

(1−(
(𝑆𝑢+𝐸𝑛)

2
)/((

(𝑆𝑢+𝐸𝑛)
2

)+0.5))

 

 

Collision (Co): To develop a metric that could identify the sensitivity of different taxonomic groups, we used 
a study by Thaxter et al. (2017). In this study, the authors analysed the ecological traits and phylogenetic 
characteristics that make different taxonomic groups more sensitive to collision. They assigned a collision 
probability to most land-bird species worldwide through a modelling approach. Based on the author's 
recommendations, we summarised this value at the family level based on global number of species 
(average value). After that, we categorised this value in four categories (ranging from 1 and 4). These 
categories were calculated following a natural break classification algorithm, the corresponding values for 
each category were: 1 (x < 0.028); 2 (0.028 < x < 0.043); 3 (0.043 <x< 0.059); 4 (x > 0.059).  

Displacement (Di): To classify the displacement, we referred to Hötker (2017), who reviewed all the 
evidence from scientific sources and 148 grey literature reports on displacement in birds to produce a 
metric for European birds. The paper reported the number of times a negative effect (e.g. displacement 
reported to reduce species abundance) or a positive effect or no effect had been found per species and, 
for those groups with enough samples, the statistical significance of this difference (binomial test). To 
produce a relevant metric, we assigned the following values to each species: 1 = Displacement never 
reported; 2 = Displacement reported in at least one study; 3 = Displacement more often reported, but 
differences not statistically significant; 4 = Displacement more often reported and differences statistically 
significant. The whole family received the value of the highest-scoring species included in that family. This 
precautionary approach was taken to ensure that phylogenetically closer species, which are more similar 
and have not been directly studied, could also be evaluated. To complement the assessment regarding bird 
families different from Europe, a systematic review looking for articles published about bird displacement 
was conducted on Web of Science using the terms: ((TS=("wind*farm*" OR "onshore" OR "offshore" OR 
"wind*turbine*")) AND TS=("birds" OR "avian")) AND TS=("displacement" OR "avoidance" OR "space*use*") 
from 2000 to 2024. In total, 24 families had displacement evidence at different levels. Accipitridae, 
Muscicapidae, Scolopacidae, Anatidae, and Charadriidae were the families with the highest displacement 
category. The Supplementary Material contains bird families with their respective displacement 
assessments. 

Conservation Status (CnS) was assigned at the species level using the IUCN Red List categories (2021) as 
follows: 5 = Critically Endangered (CR); 4 = Endangered (EN); 3 = Vulnerable (VU); 2 = Near Threatened (NT); 
1 = Least Concern (LC) or Data Deficient (DD).  

Annual adult survival (Su). We employed annual adult survival calculated for all bird species to include a 
metric that could capture life history factors (Bird et al., 2020). To transform these values into categories 
from 1 to 5, we used a natural breaks classification algorithm implemented in the RStudio package classes 
(Bivand et al., 2022). The corresponding values for each category were: 1 (x < 0.466); 2 (0.466 ≤ x < 0.559); 
3 (0.559 ≤ x < 0.655); 4 (0.655 ≤ x < 0.775); 5 (x > 0.911). 

Endemism (En): We consider the level of endemism for each species as the percentage of the global 
distribution area inside each country's territory. To calculate this parameter, we used the distribution range 
maps (BirdLife International & The Handbook of the Birds of the World, 2019) and the global database of 
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political boundaries GADM (Global Administrative Areas, 2021) in ArcGIS Pro (ESRI, 2023). To transform 
these values into categories from 1 to 5, we used the following conversion criteria: 1 = 0-20%, 2 = >20-40%, 
3 = >40-60%, 4 = >60-80%, 5 = >80-100%.  

To combine the five parameters above in the formula, balancing their contribution to the sensitivity index, 
we standardized all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.286 (see “AVISTEP_LaoPDR_Onshore.xlsx” in Supplementary 
Material), corresponding to the top ~20% of all species per country. This threshold ensured that the most 
sensitive species were represented. Additionally, conducting workshop with bird experts, we assessed the 
list, uplisting or downlisting species, if necessary, according to their relevance to the national context for 
bird conservation. For Lao, we included 115 species as priority species regarding the wind farms onshore 
impacts. To produce the final sensitivity scores, we normalised the values to a 0.01 to 1 scale, emphasising 
the much greater sensitivity of species in the top part of the list compared to those at the bottom (Critchley 
& Jessopp, 2019).  

The Supplementary Material contains 115 priority species with their respective information for different 
parameters. 

 

Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide, with a resolution of 
100x100 m grid cells. The AOH maps represent the utilised habitats within a species’ range and can be 
considered an intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). 
These maps were created using a modelling approach based on remotely sensed land cover data, 
translated to species’ habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 
2022), and known maximum and minimum elevations. The AOH maps were created using binary 
information representing presence and absence, based solely on breeding, non-breeding, and resident 
distribution (for more details, see https://github.com/BirdLifeInternational/code_for_AOH). A raster layer 
for each species was created, representing the species occurrence probability described by the proportion 
of the area of suitable habitat in each grid cell. More specifically, since our assessment was conducted at 
a 5x5 km grid cell resolution, we transformed the original AOH maps to match our resolution, calculating 
the total percentage of AOH present in each cell. We also used occurrence points to refine the likelihood 
of occurring in each grid cell for each species from different sources: 1) Local bird experts compiled 
observational records for their respective countries from a range of sources (i.e., published and 
unpublished literature, survey and project data, and a range of other sources) and 2) eBIRD data 
(https://ebird.org). To ensure the accuracy of the data, we have only included recent observations (2012-
2022) from eBIRD’s protocol, whether made while stationary or in transit. The maximum distance travelled 
was set to 7 km to ensure that all records were contained within the final ~ 5x5 km cells.  

Due to the scarcity of observational data for Lao, we assume the species has a very high probability of 
occurring in a grid cell if it has at least one occurrence of evidence that spatially overlaps with it. In these 
cases, we upgraded the cell value to the maximum value (=1), regardless of the amount of habitat available 
in the AOH surface.  

For five species without AOH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead (BirdLife International 2021). We rasterised the 
polygons in a 5x5 km grid resolution. Due to the uncertainty about the occurrence of species in the ranges 
on a broad scale, we weighted all grid cells equally, representing a 50% chance of the species occurring 
there. We also upgraded the grid cell to a maximum value when a survey point overlaps the raster surface. 

https://github.com/BirdLifeInternational/code_for_AOH
https://ebird.org/
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We adapted the formula by Bradbury et al. (2014) to weight the raster for each species by its respective 
sensitivity index and the amount of habitat in each grid cell. The final species sensitivity value (SI) was 
assigned for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty  
To provide information about the likelihood of the species' presence, we created a metric that combines 
the amount of AOH and the confirmed presence of the species in each grid cell. This categorical parameter 
has values ranging from 1 to 4 and reflects the evidence of the species' presence in that grid cell. The 
correspondence of the categories follows:  

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based just on the BirdLife range maps, we created a comparable classification 
based on the information available for those species. On these occasions, we gave the range area a generic 
value of 1 (low occurrence certainty) and a value of 3 (high occurrence certainty) to those grid cells where 
surveys confirmed the species' presence.  

 

Creating multispecies combination map – STEP 3 
We created a multispecies combination map by summing up all species-specific sensitivity maps. For Lao, 
we combined 115 priority species’ rasters. Thus, the final score for each grid cell is the result of the 
summed values of all the species present in that cell. The bird sensitivity map captures the cumulative 
impact over the range of species present in each area. To make these maps comparable with the rest of the 
sources of information, we normalised the values from 0 to 1.  

∑ 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

 

Adding other important areas for bird conservation – STEP 4 
Land Cover Land Use 
To limit the impact of renewable energy, it is important to target development away from natural habitats 
and towards areas with low ecological value, such as those already highly modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we utilised the Copernicus global land-cover dataset 
(https://lcviewer.vito.be/2019) and the discrete land cover classification, which comprises 23 classes at a 
spatial resolution of ~100 m (Buchhorn et al., 2020). We chose to use this dataset due to its high accuracy 
(average ~80%) and suitability for conservation (Jung et al., 2020). First, we reclassified all land cover 
classes to have a value of 1 except for cropland and urban/built-up areas, which received a value of 0. We 

https://lcviewer.vito.be/2019
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then calculated the percentage of natural areas present in each 5x5 km cell following a similar procedure 
as for distribution areas. In our scoring, cells with a higher percentage of natural areas will result in a higher 
sensitivity score. We combined the resulting land cover proxy map with the species cumulative map (step 
3) using a Multicriteria Analysis (MCA) (Adem Esmail & Geneletti, 2018), weighting land cover proxy and 
species sensitivity according to bird expert opinion. Therefore, land cover was weighted as 0.2 (contributing 
20% to the final layer) and priority species sensitivity as 0.8 (contributing 80% to the final layer). This final 
outcome was then normalised between zero and 1. 

Important Bird and Biodiversity Areas (IBAs)  
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. This dataset is curated by BirdLife International and available through 
website (https://datazone.birdlife.org/country/factsheet/Lao). The most up-to-date version of this data 
was used (BirdLife International, 2024). In some instances, proposed IBAs and areas not identified as IBAs 
but known to be of global significance for at-risk bird species were also included. Cells overlapping with 
these areas received the maximum value of sensitivity.  

Protected Areas  
We used the World Database on Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated by governments and curated by the UN Environment 
Programme World Conservation Monitoring Centre (UNEP-WCMC) and includes the most up-to-date 
information on protected areas. We used the latest version from 2024. All protected areas in Lao were 
included, regardless of their IUCN management category. As with IBAs, cells overlapping with these areas 
automatically received the maximum level of sensitivity.  

Identifying final sensitivity categories – STEP 5 
We categorised geographical sensitivity by applying Jenk’s Natural Breaks algorithm (Natural breaks 
function, ArcGIS Pro; ESRI, 2023) to identify four categories, which we interpret as Low, Medium, High, and 
Very High bird sensitivity. Natural Breaks minimise the squared deviations of a group’s means and are a 
standard method for splitting spatial datasets. This produced a final bird sensitivity map in a format that 
provides meaningful visualisation and is easier to interpret for a range of stakeholders in decision-making 
processes. 

 

Power Line – High voltage 

Calculating species sensitivity – STEP 1 
The sensitivity index was calculated for each regularly occurring bird species, excluding flightless, vagrant, 
rare sightings, and restricted seabirds. For Lao, we calculated the sensitivity index for 724 bird species. 

   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐶𝑜) × (𝐶𝑛𝑆)
(1−(

(𝑆𝑢+𝐸𝑛)
2

)/((
(𝑆𝑢+𝐸𝑛)

2
)+0.5))

 

 

Collision with energy cables (PwCo). Bird collisions occur during flight when birds fail to see the overhead 
wires. They represent a significant source of anthropogenic bird mortality (Loss et al., 2014) and are 
responsible for the decline of different populations (Biasotto & Kindel, 2018). Bird-related taxa typically 
show similar levels of sensitivity to collisions since they have a strong phylogenetic signal (Prinsen et al., 
2011).  

To assess the species' sensitivity to overhead collision, we used three main published reviews from Africa 
and Eurasia (Haas et al., 2003; Martín Martín et al., 2019; Prinsen et al., 2011). These reviews provide a 
classification at the family level of the main avifauna affected by collision. Four broad categories were used 

https://datazone.birdlife.org/country/factsheet/laos
http://www.protectedplanet.net/
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to measure sensitivity: Category I = casualties reported, but no apparent threat to the bird population. 
Category II = regionally or locally high casualties, but with no significant impact on the overall species 
population. Category III = Casualties are a significant mortality factor, threatening a species with 
extinction, either regionally or on a larger scale. To complement the assessment of global bird families, a 
systematic review was conducted on Web of Science to identify articles published on bird collisions with 
power lines. Slight differences were found in the classification for certain families, so we included each 
family in the following subcategories: 6 (III) = casualties constitute a significant mortality factor, threatening 
a species with extinction, regionally or at a larger scale. 5 (between category II and III). 4 (II) regionally or 
locally high casualties, but with no significant impact on the overall species population. 3 (between 
category II and I). 2 (I) casualties reported, but no apparent threat to the bird population. 1 No casualties 
reported or likely. The Supplementary Material contains bird families with their respective assessments.  

Conservation status (CnS), Endemism (En), and Annual adult survival (Su) were calculated in the same way 
as for the onshore wind sensitivity index.  

To combine the parameters in the formula and balance their contribution to the sensitivity index, we 
standardised all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.2981 (Supplementary Material), corresponding to the top ~20% of all 
species per country. This threshold ensured that the most sensitive species were represented. Additionally, 
by conducting a workshop with local bird experts, we assessed the list, uplisting or downlisting species as 
necessary, according to their relevance to the national context for bird conservation. For Lao, we included 
106 species as priority species due to their collision with power lines. To produce the final sensitivity 
scores, we normalised the values to a 0.01 to 1 scale, emphasising the much greater sensitivity of species 
in the top part of the list compared to those at the bottom (Critchley & Jessopp, 2019).  

The Supplementary Material contains 106 priority species with their respective information for different 
parameters. 

 

Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide in 100x100m grid cells as 
resolution. The AOH maps represent the utilized habitats within a species’ range and can be considered an 
intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). These maps 
were created using a modelling approach based on remotely sensed land cover data translated to species’ 
habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 2022) and known 
maximum and minimum elevation. The AOH maps were created using binary information representing 
presence and absence, and only based on breeding, non-breeding, and resident distribution (more details 
in https://github.com/BirdLifeInternational/code_for_AOH). A raster layer for each species was created, 
representing the species occurrence probability described by the proportion of area of suitable habitat in 
each grid cell. More specifically, since our assessment was in a 5x5 km grid cell resolution, we transformed 
the original AOH maps to our resolution, calculating the total percentage of AOH present in each cell. We 
also used occurrence points to refine the likelihood of occurring in each grid cell for each species from 
different sources: 1) Local bird experts compiled observational records for their respective countries from 
a range of sources (i.e., published, and unpublished literature, survey and project data, and a range of other 
sources) and 2) eBIRD data (https://ebird.org). To guarantee the accuracy of the data, we only included 
recent observations (2012 to 2022) that came from eBIRD’s protocol, whether stationary or travelling. The 
maximum distance travelled was set to 7 km to ensure that all records were contained within the final ~ 
5x5 km cells.  

https://github.com/BirdLifeInternational/code_for_AOH
https://ebird.org/
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Due to the scarcity of observational data for Lao, we assume the species has a very high probability of 
occurring in a grid cell if it has at least one occurrence of evidence that spatially overlaps with it. In these 
cases, we upgraded the cell value to the maximum value (=1), regardless of the amount of habitat available 
in the AOH surface.  

For five species without AOH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead. We rasterised the polygons in a 5x5 km grid resolution. 
Due to the uncertainty about the occurrence of species in the ranges on a broad scale, we weighted all grid 
cells equally, representing a 50% chance of the species occurring there. We also upgraded the grid cell to 
a maximum value when a survey point overlaps the raster surface. 

We adapted the formula by Bradbury et al. (2014) to weight the raster for each species by its respective 
sensitivity index and the amount of habitat in each grid cell. The final species sensitivity value (SI) was 
assigned for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty  
To provide information about the likelihood of the species' presence, we created a metric that combines 
the amount of AOH and the confirmed presence of the species in each grid cell. This categorical parameter 
has values ranging from 1 to 4 and reflects the evidence of the species' presence in that grid cell. The 
correspondence of the categories follows:  

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based solely on the BirdLife range maps, we created a comparable 
classification using the available information for those species. On these occasions, we assigned a generic 
value of 1 (low occurrence certainty) to the range area and a value of 3 (high occurrence certainty) to those 
grid cells where surveys confirmed the species' presence.  

 

Creating a multispecies combination map – STEP 3 
We created a multispecies combination map by summing the sensitivity maps for all species. For Lao, we 
combined the rasters of 106 priority species. Thus, the final score for each grid cell is the result of the 
summed values of all the species present in that cell. The bird sensitivity map captures the cumulative 
impact over the range of species present in each area. To make these maps comparable with the rest of the 
sources of information, we normalised the values from 0 to 1.  

∑ 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠
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Adding other important areas for bird conservation – STEP 4 
Land Cover Land Use 
To mitigate the impact of renewable energy, it is crucial to focus development away from natural habitats 
and towards areas with low ecological value, such as those already heavily modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we used the Copernicus global land-cover 
(https://lcviewer.vito.be/2019) and the discrete land cover classification, which includes 23 classes at a 
~100 m spatial resolution (Buchhorn et al., 2020). We chose to use this dataset due to its high accuracy 
(average ~80%) and suitability for conservation (Jung et al., 2020). First, we reclassified all land cover 
classes to have a value of 1 except for cropland and urban/built-up areas, which received a value of 0. We 
then calculated the percentage of natural areas present in each 5x5 km cell following a similar procedure 
to that for distribution areas. In our scoring, cells with a higher percentage of natural areas will result in a 
higher sensitivity score. We combined the resulting land cover proxy map with the species cumulative map 
(step 3) using a Multicriteria Analysis (MCA) (Adem Esmail & Geneletti, 2018), weighting land cover proxy 
and species sensitivity according to bird expert opinion. Therefore, land cover was weighted as 0.2 
(contributing 20% to the final layer) and priority species sensitivity as 0.8 (contributing 80% to the final 
layer). This final outcome was then normalised between zero and 1. 

Important Bird and Biodiversity Areas (IBAs)  
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. This dataset is curated by BirdLife International and available through 
website (https://datazone.birdlife.org/country/factsheet/Lao). The most up-to-date version of this data 
was used (BirdLife International, 2024). In some instances, proposed IBAs and areas not identified as IBAs 
but nonetheless known to be of global significance for at-risk bird species were also included. Cells 
overlapping with these areas received the maximum value of sensitivity.  

Protected Areas  
We used the World Database on Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated by governments and curated by the UN Environment 
Programme's World Conservation Monitoring Centre (UNEP-WCMC), providing the most up-to-date 
information on protected areas. We used the latest version from 2024. All protected areas were included 
for Lao, regardless of their IUCN management category. As with IBAs, cells overlapping with these areas 
automatically received the maximum level of sensitivity.  

 

Identifying final sensitivity categories – STEP 5 
We categorised geographical sensitivity by applying Jenk’s Natural Breaks algorithm (Natural breaks 
function, ArcGIS Pro; ESRI, 2023) to identify four categories, which we interpret as Low, Medium, High, and 
Very High bird sensitivity. Natural Breaks minimise the squared deviations of a group’s means and are a 
standard method for splitting spatial datasets. This produced a final bird sensitivity map in a format that 
provides meaningful visualisation and is easier to interpret for a range of stakeholders in decision-making 
processes. 

 

Power Line – Medium and Low voltage 

Calculating species sensitivity – STEP 1 
Distribution lines primarily impact birds through collisions with overhead cables and electrocution on 
energy pylons and cables. Therefore, in addition to considering the species most sensitive to collision 

https://lcviewer.vito.be/2019
https://datazone.birdlife.org/country/factsheet/laos
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using the formula mentioned for the High-voltage lines (PwCo), a specific formula for calculating and 
identifying species sensitive to electrocution was also applied separately: 

      𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐸𝑙𝑒𝑐) × (𝐶𝑛𝑆)
(1−(

(𝑆𝑢+𝐸𝑛)
2

)/((
(𝑆𝑢+𝐸𝑛)

2
)+0.5))

 

 

To assess the species' sensitivity to electrocution, we used three main published reviews from Africa and 
Eurasia (Haas et al., 2003; Martín Martín et al., 2019; Prinsen et al., 2011). These reviews provide a 
classification at the family level of the main avifauna affected by electrical shock. Four broad categories 
were used to measure sensitivity: Category I = casualties reported, but no apparent threat to the bird 
population. Category II = regionally or locally high casualties, but with no significant impact on the overall 
species population. Category III = Casualties are a major mortality factor, threatening a species with 
extinction, either regionally or on a larger scale. To complement the assessment of global bird families, a 
systematic review was conducted on Web of Science to identify articles published about bird 
electrocutions involving power lines. Slight differences were found in the classification for certain families, 
so we included each family in the following subcategories: 6 (III) = casualties are a major mortality factor, 
threatening a species with extinction, regionally or at a larger scale. 5 (between category II and III). 4 (II) 
regionally or locally high casualties, but with no significant impact on the overall species population. 3 
(between category II and I). 2 (I) casualties reported, but no apparent threat to the bird population. 1 No 
casualties reported or likely. The Supplementary Material contains bird families with their respective 
assessments. 

Conservation status (CnS), Endemism (En), and Annual adult survival (Su) were calculated in the same way 
as for the onshore wind sensitivity index.  

To combine the parameters above in the formula and balance their contribution to the sensitivity index, we 
standardised all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that, considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.1829 (see “AVISTEP_LaoPDR_PW_Electrocution.xlsx” in 
Supplementary Material), corresponding to the top ~20% of all species per country. This threshold ensured 
that the most sensitive species were represented. Additionally, by conducting a workshop with local bird 
experts, we assessed the list, uplisting or downlisting species as necessary, according to their relevance to 
the national context for bird conservation. For Lao, we included 108 species as priority species due to their 
susceptibility to electrocution from power lines. To produce the final sensitivity scores, we normalised the 
values to a 0.01 to 1 scale, emphasising the much greater sensitivity of species in the top part of the list 
compared to those at the bottom (Critchley & Jessopp, 2019).  

The Supplementary Material contains 108 priority species, along with their respective information for 
various parameters. 

 

Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide, with a resolution of 
100x100m grid cells. The AOH maps represent the utilised habitats within a species’ range and can be 
considered an intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). 
These maps were created using a modelling approach based on remotely sensed land cover data, 
translated to species’ habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 
2022), and known maximum and minimum elevations. The AOH maps were created using binary 
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information representing presence and absence, based solely on breeding, non-breeding, and resident 
distribution (for more details, see https://github.com/BirdLifeInternational/code_for_AOH). A raster layer 
for each species was created, representing the species occurrence probability described by the proportion 
of area of suitable habitat in each grid cell. More specifically, since our assessment was conducted at a 
5x5 km grid cell resolution, we transformed the original AOH maps to match our resolution, calculating the 
total percentage of AOH present in each cell. We also used occurrence points to refine the likelihood of 
occurring in each grid cell for each species from different sources: 1) Local bird experts compiled 
observational records for their respective countries from a range of sources (i.e., published and 
unpublished literature, survey and project data, and a range of other sources) and 2) eBIRD data 
(https://ebird.org). To ensure the accuracy of the data, we have only included recent observations (2012-
2022) from eBIRD’s protocol, whether made while stationary or in transit. The maximum distance travelled 
was set to 7 km to ensure that all records were contained within the final ~ 5x5 km cells.  

Due to the scarcity of observational data for Lao, we assume the species has a very high probability of 
occurring in a grid cell if it has at least one occurrence of evidence that spatially overlaps with it. In these 
cases, we upgraded the cell value to the maximum value (=1), regardless of the amount of habitat available 
in the AOH surface.  

For five species without AOH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead. We rasterised the polygons in a 5x5 km grid resolution. 
Due to the uncertainty about the occurrence of species in the ranges on a broad scale, we weighted all grid 
cells equally, representing a 50% chance of the species occurring there. We also upgraded the grid cell to 
a maximum value when a survey point overlaps the raster surface. 

We adapted the formula by Bradbury et al. (2014) to weight the raster for each species by its respective 
sensitivity index and the amount of habitat in each grid cell. The final species sensitivity value (SI) was 
assigned for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty  
To provide information about the likelihood of the species' presence, we created a metric that combines 
the amount of AOH and the confirmed presence of the species in each grid cell. This categorical parameter 
has values ranging from 1 to 4 and reflects the evidence of the species' presence in that grid cell. The 
correspondence of the categories follows:  

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based solely on the BirdLife range maps, we created a comparable 
classification using the available information for those species. On these occasions, we assigned a generic 
value of 1 (low occurrence certainty) to the range area and a value of 3 (high occurrence certainty) to those 
grid cells where surveys confirmed the species' presence.  

 

https://github.com/BirdLifeInternational/code_for_AOH
https://ebird.org/
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Creating a multispecies combination map – STEP 3 
We created a multispecies combination map by summing the sensitivity maps for all species. We create 
one map specific to collision (combining 106 species) and another for electrocution (combining 108 
species). Thus, the final score for each grid cell is the result of the summed values of all the species present 
in that cell. The bird sensitivity map captures the cumulative impact over the range of species present in 
each area. To make these maps comparable with the rest of the sources of information, we normalised the 
values from 0 to 1.  

∑ 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

 

** Distribution lines considered maps from Collision and Electrocution, combining them and conserving 
the maximum value in each grid cell. That means if a grid cell has a value of 1 for electrocution but 0.5 for 
collision, the final grid cell value is 1. 

 

Adding other important areas for bird conservation – STEP 4 
Land Cover Land Use 
To mitigate the impact of renewable energy, it is crucial to focus development away from natural habitats 
and towards areas with low ecological value, such as those already heavily modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we utilised the Copernicus global land-cover dataset 
(https://lcviewer.vito.be/2019) and the discrete land cover classification, which comprises 23 classes at a 
spatial resolution of ~100 m (Buchhorn et al., 2020). We chose to use this dataset due to its high accuracy 
(average ~80%) and suitability for conservation (Jung et al., 2020). First, we reclassified all land cover 
classes to have a value of 1 except for cropland and urban/built-up areas, which received a value of 0. We 
then calculated the percentage of natural areas present in each 5x5 km cell following a similar procedure 
as for distribution areas. In our scoring, cells with a higher percentage of natural areas will result in a higher 
sensitivity score. We combined the resulting land cover proxy map with the species cumulative map (step 
3) using a Multicriteria Analysis (MCA) (Adem Esmail & Geneletti, 2018), weighting land cover proxy and 
species sensitivity according to bird expert opinion. So, land cover was weighted as 0.2 (contributing with 
20% for the final layer) and priority species sensitivity (the maps merging collision and electrocution) as 0.8 
(contributing with 80% for the final layer. This outcome was then normalised between zero and 1. 

Important Bird and Biodiversity Areas (IBAs)  
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. This dataset is curated by BirdLife International and available through 
website (https://datazone.birdlife.org/country/factsheet/Lao). The most up-to-date version of this data 
was used (BirdLife International, 2024). In some instances, proposed IBAs and areas not identified as IBAs 
but nonetheless known to be of global significance for at-risk bird species were also included. Cells 
overlapping with these areas received the maximum value of sensitivity.  

Protected Areas  
We used the World Database on Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated by governments and curated by the UN Environment 
Programme's World Conservation Monitoring Centre (UNEP-WCMC), providing the most up-to-date 
information on protected areas. We used the latest version from 2024. All protected areas in Lao were 
included, regardless of their IUCN management category. As with IBAs, cells overlapping with these areas 
automatically received the maximum level of sensitivity.  

https://lcviewer.vito.be/2019
https://datazone.birdlife.org/country/factsheet/laos
http://www.protectedplanet.net/
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Identifying final sensitivity categories – STEP 5 
We categorised geographical sensitivity by applying Jenk’s Natural Breaks algorithm (Natural breaks 
function, ArcGIS Pro; ESRI, 2023) to identify four categories, which we interpret as Low, Medium, High, and 
Very High bird sensitivity. Natural Breaks minimise the squared deviations of a group’s means and are a 
standard method for splitting spatial datasets. This produced a final bird sensitivity map in a format that 
provides meaningful visualisation and is easier to interpret for a range of stakeholders in decision-making 
processes. 

 

Solar Photovoltaic (PV) 

Calculating Sensitivity for all species occurring in the country – STEP 1 
The species-specific sensitivity based on different impacts created for the other types of energy 
developments does not apply to the context of solar photovoltaic energy. We have used a precautionary 
approach, considering that the presence of solar photovoltaics would result in habitat loss and/or 
degradation for all species that occur in the area, although some species can indeed coexist with solar PV 
installations. 

We considered a list of all species occurring in the country, individually weighted by their respective 
Conservation Status (CnS, the primary factor) and Endemicity (En, an aggravating factor). For Lao, we 
worked with a total of 724 species. 

Conservation Status (CnS): We used the IUCN Red List categories from 2021 as follows: 5 = Critically 
Endangered (CR); 4 = Endangered (EN); 3 = Vulnerable (VU); 2 = Near Threatened (NT); 1 = Least Concern 
(LC) or Data Deficient (DD).  

Endemism (En): We calculated the percentage of the global distribution area inside each country's 
territory. To calculate this parameter, we utilised the distribution range maps (BirdLife International & The 
Handbook of the Birds of the World, 2019) and the global database of political boundaries, GADM (Global 
Administrative Areas, 2024), in ArcGIS Pro (ESRI, 2023). To transform these values into categories from 1 to 
5, we used the following conversion criteria: 1 = 0-20%, 2 = >20-40%, 3 = >40-60%, 4 = >60-80%, 5 = >80-
100%. To standardise all metrics and make them comparable, we divided each by the maximum category 
value following recommendations from Certain et al., 2015.  

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  (𝐶𝑛𝑆)(1−(𝐸𝑛)/((𝐸𝑛)+0.5))
    

 

Mapping the species distribution according to the Sensitivity – STEP 2 
We used the BirdLife range maps to create a raster layer for the 724 species with a 5x5 km grid cell 
resolution. The respective species sensitivity value was weighted for each raster surface.  

 

Creating a species richness map – STEP 3 
To create a surface representing the cumulative sensitivity (hereinafter bird richness). we summed all the 
raster in the same grid cell following the formula 

∑ (𝐶𝑛𝑆)(1−(𝐸𝑛)/((𝐸𝑛)+0.5))

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠
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Creating a layer with potential wilderness areas and adding important 
areas for bird conservation – STEP 4 
To identify zones where the development of solar farms may negatively impact biodiversity, we combined 
the bird richness surface with a human footprint surface (used as a proxy to infer wilderness). Accordingly, 
areas far from the site with high value for the human footprint index (population density, built infrastructure 
such as roads, railways, factories, and night-time lights) would be less exposed to disturbance (Ascensão 
et al. 2023) and, therefore, consist of more relevant areas for bird conservation. We used HFI second 
generation of information with 300 m2 as resolution from https://wcshumanfootprint.org/ (data-access 
31/10/2023). 

The bird richness surface was combined with the human footprint surface, both calculated at a 5x5km 
resolution and combined using Multicriteria Analysis. The human footprint surface was weighted as 0.4 
(contributing 40% to the final layer), and the bird richness sensitivity was weighted as 0.6 (contributing 60% 
to the final layer). This outcome was then normalised between zero and 1. 

The information for protected areas and IBAs was the same as previously used. To create the final 
sensitivity maps, we combined these datasets by retaining the maximum value from all overlapping cells. 
In this way, cells designated as IBAs and protected areas automatically received the maximum level of 
sensitivity (1), while all other cells will vary between 0 and 1 depending on their percentage on the trade-off 
between bird richness and human footprint layer.  

 

Identifying final sensitivity categories – STEP 5 
We categorised sensitivity by applying Jenks’ Natural Breaks algorithm to identify four categories, which we 
interpret as Low, Moderate, High, and Very High bird sensitivity. This produced a final and continuous bird 
sensitivity map in a format that is easier to understand and could be used by a range of stakeholders in 
decision-making processes. 

 

  

https://wcshumanfootprint.org/
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Wind Farm Onshore 

Calculating species sensitivity – STEP 1 
The respective national species lists to be assessed were created in agreement with BirdLife International, 
and bird experts in Uzbekistan. The sensitivity index was calculated for each regularly occurring bird 
species, excluding flightless, vagrant, and rare sightings, as well as restricted seabirds. For Uzbekistan, we 
calculated the sensitivity index for 321 bird species following the formula. 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝐶𝑜 + (
𝐷𝑖

5
)) × (𝐶𝑛𝑆)

(1−(
(𝑆𝑢+𝐸𝑛)

2
)/((

(𝑆𝑢+𝐸𝑛)
2

)+0.5))

 

 

Collision (Co): To develop a metric that could identify the sensitivity of different taxonomic groups, we used 
a study by Thaxter et al. (2017). In this study, the authors analysed the ecological traits and phylogenetic 
characteristics that make different taxonomic groups more sensitive to collision. They assigned a collision 
probability to most land-bird species worldwide through a modelling approach. Based on the author's 
recommendations, we summarised this value at the family level based on the global number of species 
(average value). After that, we categorised this value into four categories (ranging from 1 to 4). These 
categories were calculated following a natural break classification algorithm; the corresponding values for 
each category were: 1 (x < 0.028); 2 (0.028 < x < 0.043); 3 (0.043 <x< 0.059); 4 (x > 0.059).  

Displacement (Di): To classify the displacement, we referred to Hötker (2017), who reviewed all the 
evidence from scientific sources and 148 grey literature reports on displacement in birds to produce a 
metric for European birds. The paper reported the number of times a negative effect (e.g., displacement 
reported to reduce species abundance) or a positive effect or no effect had been found per species, and, 
for those groups with sufficient samples, the statistical significance of this difference (using a binomial 
test). To produce a relevant metric, we assigned the following values to each species: 1 = Displacement 
never reported; 2 = Displacement reported in at least one study; 3 = Displacement more often reported, 
but with differences not statistically significant; 4 = Displacement more often reported and with statistically 
significant differences. The entire family received the value of the highest-scoring species within that 
family. This precautionary approach was taken to ensure that phylogenetically closer species, which are 
more similar and have not been directly studied, could also be evaluated. To complement the assessment 
regarding bird families different from Europe, a systematic review looking for articles published about bird 
displacement was conducted on Web of Science using the terms: ((TS=("wind*farm*" OR "onshore" OR 
"offshore" OR "wind*turbine*")) AND TS=("birds" OR "avian" )) AND TS=("displacement" OR "avoidance" OR 
"space*use*") from 2000 to 2024. In total, 24 families had evidence of displacement at various levels. 
Accipitridae, Muscicapidae, Scolopacidae, Anatidae, and Charadriidae were the families with the highest 
displacement category. The Supplementary Material contains bird families with their respective 
displacement assessments. 

Conservation Status (CnS) was assigned at the species level using the IUCN Red List categories (2021) as 
follows: 5 = Critically Endangered (CR); 4 = Endangered (EN); 3 = Vulnerable (VU); 2 = Near Threatened (NT); 
1 = Least Concern (LC) or Data Deficient (DD).  

Annual adult survival (Su). We employed annual adult survival calculated for all bird species to include a 
metric that could capture life history factors (Bird et al., 2020). To transform these values into categories 
from 1 to 5, we used a natural breaks classification algorithm implemented in the RStudio package classes 
(Bivand et al., 2022). The corresponding values for each category were: 1 (x < 0.49); 2 (0.49 ≤ x < 0.59); 3 
(0.59 ≤ x < 0.69); 4 (0.69 ≤ x < 0.80); 5 (x > 0.80). 

Endemism (En): We consider the level of endemism for each species as the percentage of the global 
distribution area inside each country's territory. To calculate this parameter, we utilized the distribution 
range maps (BirdLife International & The Handbook of the Birds of the World, 2021) and the global database 
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of political boundaries, GADM (Global Administrative Areas, 2021), in ArcGIS Pro (ESRI, 2023). To transform 
these values into categories from 1 to 5, we used the following conversion criteria: 1 = 0-20%; 2 = >20-40%; 
3 = >40-60%; 4 = >60-80%; 5 = > 80-100%.  

To combine the five parameters above in the formula, balancing their contribution to the sensitivity index, 
we standardized all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.313 (see “AVISTEP_Uzbekistan_Onshore.xlsx” in Supplementary 
Material), corresponding to the top ~20% of all species per country. This threshold ensured that the most 
sensitive species were represented. Additionally, we assessed the list with local bird experts, uplisting or 
downlisting species, if necessary, according to their relevance to the national context for bird conservation. 
For Uzbekistan, we included 55 species as priority species regarding the wind farms onshore impacts. To 
produce the final sensitivity scores, we normalised the values to a 0.01 to 1 scale, emphasizing the much 
greater sensitivity of species in the top part of the list compared to those at the bottom (Critchley & Jessopp, 
2019).  

The Supplementary Material contains 55 priority species, along with their respective information for the 
different parameters. 

 

Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide, with a resolution of 
100x100m grid cells. The AOH maps represent the utilized habitats within a species’ range and can be 
considered an intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). 
These maps were created using a modelling approach based on remotely sensed land cover data, 
translated to species’ habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 
2022) and known maximum and minimum elevations. The AOH maps were created using binary 
information representing presence and absence, based solely on breeding, non-breeding, and resident 
distribution (for more details, see https://github.com/BirdLifeInternational/code_for_AOH). A raster layer 
was created for each species, representing the species' occurrence probability as the proportion of 
suitable habitat area in each grid cell. More specifically, since our assessment was conducted at a 5x5 km 
grid cell resolution, we transformed the original AOH maps to match our resolution, calculating the total 
percentage of AOH present in each cell. We also used occurrence points to refine the likelihood of 
occurring in each grid cell for each species from different sources: 1) Local bird experts compiled 
observational records for their respective countries from a range of sources (i.e., published, and 
unpublished literature, survey and project data, and a range of other sources) and 2) eBIRD data 
(https://ebird.org). To download and curate the datasets, we used the RStudio package auk (Strimas-
Mackey et al., 2018). To ensure the accuracy of the data, we have only included recent observations (2012-
2022) from eBIRD’s protocol, whether made while stationary or travelling. The maximum distance travelled 
was set to 7 km to ensure that all records were contained within the final ~ 5x5 km cells.  

Due to the scarcity of observational data for Uzbekistan, we assume the species has a very high probability 
of occurring in a grid cell if it has at least one occurrence of evidence that spatially overlaps with it. In these 
cases, we upgraded the cell value to the maximum value (1), regardless of the amount of habitat available 
in the AOH surface.  

For a few species without AoH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead (BirdLife International 2021). We rasterised the 
polygons in a 5x5 km grid resolution. Due to the uncertainty about the occurrence of species in the ranges 
on a broad scale, we weighted all grid cells equally = at 0.5, representing a 50% chance of the species 

https://github.com/BirdLifeInternational/code_for_AOH
https://ebird.org/
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occurring there. We also upgraded the grid cell to a maximum value when a survey point overlaps the raster 
surface. 

We adapted the formula by Bradbury et al. (2014) to weight the raster for each species by its respective 
sensitivity index and the amount of habitat in each grid cell. The final species sensitivity value (SI) was 
assigned for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty  
To provide information about the likelihood of the species' presence, we created a metric that combines 
the amount of AOH and the confirmed presence of the species in each grid cell. This categorical parameter 
has values ranging from 1 to 4 and reflects the evidence of the species' presence in that grid cell. The 
correspondence of the categories follows:  

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based solely on the BirdLife range maps, we created a comparable 
classification using the available information for those species. On these occasions, we assigned a generic 
value of 1 (low occurrence certainty) to the range area and a value of 3 (high occurrence certainty) to those 
grid cells where surveys confirmed the species' presence.  

 

Creating multispecies combination map – STEP 3 
We created a multispecies combination map by summing the sensitivity maps for all species. For 
Uzbekistan, we combined 55 priority species’ rasters. Thus, the final score for each grid cell is the result of 
the summed values of all the species present in that cell. The bird sensitivity map captures the cumulative 
impact over the range of species present in each area. To make these maps comparable with the rest of the 
sources of information, we normalised the values from 0 to 1.  

∑ 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

 

Adding other important areas for bird conservation – STEP 4 
Land Cover Land Use 
To mitigate the impact of renewable energy, it is crucial to focus development away from natural habitats 
and towards areas with low ecological value, such as those already heavily modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we utilized the Copernicus global land-cover dataset 
(https://lcviewer.vito.be/2019) and the discrete land cover classification, which comprises 23 classes at a 

https://lcviewer.vito.be/2019
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spatial resolution of ~100 m (Buchhorn et al., 2020). We chose to use this dataset due to its high accuracy 
(average ~80%) and suitability for conservation (Jung et al., 2020).  

Uzbekistan has a unique biodiversity resulting from a combination of geographic, climatic, and ecological 
factors that make it distinct within Central Asia and globally. Based on this, we created a different hierarchy 
of weights to work with the various land cover classes, assigning greater relevance to classes that are more 
relevant to biodiversity and have undergone less human-induced change. Thus, we applied the Analytic 
Hierarchy Process (AHP) to contrast different land cover, and we set the following hierarchy of weights: all 
types of forests – open and closed, permanent water bodies, herbaceous wetland, moss and lichen had 
the maximum weight (grid cell received value of 100); following by Shrubs, Herbaceous vegetation (grid cell 
received value of 52); Bare, desert and sparse vegetation (grid cell received value of 27); Cultivated and 
managed vegetation/agriculture (cropland) (grid cell received value of 14); and Urban / built up - Land 
covered by buildings and other man-made structures (grid cell received value of 7). We then calculated the 
median value for each 5x5 cell to create an index to represent a proxy to infer value for biodiversity. In our 
scoring, cells with a higher percentage of natural areas will result in a higher sensitivity score. We combined 
the resulting land cover proxy map with the species cumulative map (step 3) using a Multicriteria Analysis 
(MCA) (Adem Esmail & Geneletti, 2018), weighting land cover proxy and species sensitivity according to 
bird expert opinion. Therefore, land cover was weighted as 0.4 (contributing 40% to the final layer) and 
priority species sensitivity as 0.6 (contributing 60% to the final layer). This final outcome was then 
normalized to a value between 0 and 1. 

Important Bird and Biodiversity Areas (IBAs)  
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. This dataset is curated by BirdLife International and available through 
website (https://datazone.birdlife.org/country/factsheet/uzbekistan). The most up-to-date version of this 
data was used (BirdLife International, 2024). Cells overlapping with these areas received the maximum 
value of sensitivity.  

Protected Areas  
We used the World Database on Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated by governments and curated by the UN Environment 
Programme's World Conservation Monitoring Centre (UNEP-WCMC), providing the most up-to-date 
information on protected areas. We used the latest version from 2024. All protected areas in Uzbekistan 
were included, regardless of their IUCN management category. As with IBAs, cells overlapping with these 
areas automatically received the maximum level of sensitivity.  

Special areas for birds 
Some areas in Uzbekistan are critically important for migratory species, such as bustards, as they provide 
ideal habitat conditions, migration stopover points, and breeding or wintering grounds that birds depend 
on (Roy et al., 2025; Kesller and Collar, 2022). Steppe and semi-desert habitats were mapped as well as 
specific sites important for Bustards (stopover points, wintering grounds, and main migratory flightways). 
As with IBAs, cells overlapping with these areas automatically received the maximum level of sensitivity. 

 

Identifying final sensitivity categories – STEP 5 
We categorised geographical sensitivity by applying the Jenk’s Natural Breaks algorithm (Natural breaks 
function, ArcGIS Pro; ESRI, 2023) to identify four categories, which we interpret as Low, Medium, High, and 
Very High bird sensitivity. Natural Breaks minimize the squared deviations of a group’s means and are a 
standard method for splitting spatial datasets. This produced a final bird sensitivity map in a format that 
provides meaningful visualization and is easier to interpret for a range of stakeholders in decision-making 
processes. 

 

https://datazone.birdlife.org/country/factsheet/uzbekistan
http://www.protectedplanet.net/


92 
 

Power Line – High voltage 

Calculating species sensitivity – STEP 1 
The sensitivity index was calculated for each regularly occurring bird species, excluding flightless, vagrant, 
rare sightings, and restricted seabirds. For Uzbekistan, we calculated the sensitivity index for 321 bird 
species. 

   𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐶𝑜) × (𝐶𝑛𝑆)
(1−(

(𝑆𝑢+𝐸𝑛)
2

)/((
(𝑆𝑢+𝐸𝑛)

2
)+0.5))

 

 

Collision with energy cables (PwCo). Bird collisions with overhead wires occur during flight when birds 
fail to see the cable or don't have enough time to avoid them. They represent a significant source of 
anthropogenic bird mortality (Loss et al., 2014) and are responsible for the decline of different populations 
(Biasotto & Kindel, 2018; Uddin et al 2021). Bird-related taxa typically show similar levels of sensitivity to 
collisions since they have a strong phylogenetic signal (Prinsen et al., 2011).  

To assess the species' sensitivity to overhead collision, we used three main published reviews from Africa 
and Eurasia (Haas et al., 2003; Martín Martín et al., 2019; Prinsen et al., 2011). These reviews provide a 
classification at the family level of the main avifauna affected by collision. Four broad categories were used 
to measure sensitivity: Category I = casualties reported, but no apparent threat to the bird population. 
Category II = regionally or locally high casualties, but with no significant impact on the overall species 
population. Category III = Casualties are a major mortality factor, threatening a species with extinction, 
either regionally or on a larger scale. To complement the assessment regarding global bird families, a 
systematic review looking for articles published about bird collisions with power lines was conducted on 
Web of Science. Slight differences were found in the classification for certain families, so we included each 
family in the following subcategories: 6 (III) = casualties are a major mortality factor, threatening a species 
with extinction, regionally or at a larger scale. 5 (between category II and III). 4 (II) regionally or locally high 
casualties, but with no significant impact on the overall species population. 3 (between category II and I). 
2 (I) casualties reported, but no apparent threat to the bird population. 1 No casualties reported or likely. 
The Supplementary Material “AVISTEP_Uzbekistan_PW_Collision.xlsx” contains bird families with their 
respective assessments. 

Conservation status (CnS), endemism (En), and annual adult survival (Su) were calculated in the same way 
as for the onshore wind sensitivity index.  

To combine the parameters in the formula and balance their contribution to the sensitivity index, we 
standardized all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.2981 (see “AVISTEP_Uzbekistan_PW_Collision.xlsx” in 
Supplementary Material), corresponding to the top ~20% of all species per country. This threshold ensured 
that the most sensitive species were represented. Additionally, conducting workshop with local bird 
experts, we assessed the list, uplisting or downlisting species, if necessary, according to their relevance to 
the national context for bird conservation. For Uzbekistan, we included 59 species as priority species 
regarding the collision with power lines. To produce the final sensitivity scores, we normalised the values 
to a 0.01 to 1 scale, emphasizing the much greater sensitivity of species in the top part of the list compared 
to those at the bottom (Critchley & Jessopp, 2019).  

The Supplementary Material contains 59 priority species along with their respective information for 
different parameters. 



93 
 

 

Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide, with a resolution of 
100x100m grid cells. The AOH maps represent the utilized habitats within a species’ range and can be 
considered an intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). 
These maps were created using a modelling approach based on remotely sensed land cover data, 
translated to species’ habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 
2022) and known maximum and minimum elevations. The AOH maps were created using binary 
information representing presence and absence, based solely on breeding, non-breeding, and resident 
distribution (for more details, see https://github.com/BirdLifeInternational/code_for_AOH). A raster layer 
was created for each species, representing the species' occurrence probability as the proportion of 
suitable habitat area in each grid cell. More specifically, since our assessment was conducted at a 5x5 km 
grid cell resolution, we transformed the original AOH maps to match our resolution, calculating the total 
percentage of AOH present in each cell. We also used occurrence points to refine the likelihood of 
occurring in each grid cell for each species from different sources: 1) Local bird experts compiled 
observational records for their respective countries from a range of sources (i.e., published, and 
unpublished literature, survey and project data, and a range of other sources) and 2) eBIRD data 
(https://ebird.org). To download and curate the datasets, we used the RStudio package auk (Strimas-
Mackey et al., 2018). To ensure the accuracy of the data, we have only included recent observations (2012-
2022) from eBIRD’s protocol, whether made while stationary or travelling. The maximum distance travelled 
was set to 7 km to ensure that all records were contained within the final ~ 5x5 km cells.  

Due to the scarcity of observational data for Uzbekistan, we assume the species has a very high probability 
of occurring in a grid cell if it has at least one occurrence of evidence that spatially overlaps with it. In these 
cases, we upgraded the cell value to the maximum value (1), regardless of the amount of habitat available 
in the AOH surface.  

For a few species without AoH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead (BirdLife International 2021). We rasterised the 
polygons in a 5x5 km grid resolution. Due to the uncertainty about the occurrence of species in the ranges 
on a broad scale, we weighted all grid cells equally = at 0.5, representing a 50% chance of the species 
occurring there. We also upgraded the grid cell to a maximum value when a survey point overlaps the raster 
surface. 

We adapted the formula by Bradbury et al. (2014) to weight the raster for each species by its respective 
sensitivity index and the amount of habitat in each grid cell. The final species sensitivity value (SI) was 
assigned for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty  
To provide information about the likelihood of the species' presence, we created a metric that combines 
the amount of AOH and the confirmed presence of the species in each grid cell. This categorical parameter 
has values ranging from 1 to 4 and reflects the evidence of the species' presence in that grid cell. The 
correspondence of the categories follows:  

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

https://github.com/BirdLifeInternational/code_for_AOH
https://ebird.org/
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High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based solely on the BirdLife range maps, we created a comparable 
classification using the available information for those species. On these occasions, we assigned a generic 
value of 1 (low occurrence certainty) to the range area and a value of 3 (high occurrence certainty) to those 
grid cells where surveys confirmed the species' presence.  

 

Creating multispecies combination map – STEP 3 
We created a multispecies combination map by summing the sensitivity maps for all species. For 
Uzbekistan, we combined the rasters of 59 priority species. Thus, the final score for each grid cell is the 
result of the summed values of all the species present in that cell. The bird sensitivity map captures the 
cumulative impact over the range of species present in each area. To make these maps comparable with 
the rest of the sources of information, we normalised the values from 0 to 1.  

∑ 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

 

Adding other important areas for bird conservation – STEP 4 
Land Cover Land Use 
To mitigate the impact of renewable energy, it is crucial to focus development away from natural habitats 
and towards areas with low ecological value, such as those already heavily modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we utilized the Copernicus global land-cover dataset 
(https://lcviewer.vito.be/2019) and the discrete land cover classification, which comprises 23 classes at a 
spatial resolution of ~100 m (Buchhorn et al., 2020). We chose to use this dataset due to its high accuracy 
(average ~80%) and suitability for conservation (Jung et al., 2020).  

Uzbekistan has a unique biodiversity resulting from a combination of geographic, climatic, and ecological 
factors that make it distinct within Central Asia and globally. Based on this, we created a different hierarchy 
of weights to work with the various land cover classes, assigning greater relevance to classes that are more 
relevant for biodiversity and have undergone less human-induced change. Thus, we applied the Analytic 
Hierarchy Process (AHP) to contrast different land cover, and we set the following hierarchy of weights: all 
types of forests – open and closed, permanent water bodies, herbaceous wetland, moss and lichen had 
the maximum weight (grid cell received value of 100); following by Shrubs, Herbaceous vegetation, Bare, 
desert and sparse vegetation (grid cell received value of 32); Cultivated and managed 
vegetation/agriculture (cropland) (grid cell received value of 16); and Urban / built up - Land covered by 
buildings and other man-made structures (grid cell received value of 7). We then calculated the median 
value for each 5x5 cell to create an index that represents a proxy for inferring the value of biodiversity. In our 
scoring, cells with a higher percentage of natural areas will result in a higher sensitivity score. We combined 
the resulting land cover proxy map with the species cumulative map (step 3) using a Multicriteria Analysis 
(MCA) (Adem Esmail & Geneletti, 2018), weighting land cover proxy and species sensitivity according to 
bird expert opinion. Therefore, land cover was weighted as 0.4 (contributing 40% to the final layer), and 
priority species sensitivity was weighted as 0.6 (contributing 60% to the final layer). This final outcome was 
then normalized to a value between 0 and 1. 

https://lcviewer.vito.be/2019
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Important Bird and Biodiversity Areas (IBAs)  
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. This dataset is curated by BirdLife International and available through 
website (https://datazone.birdlife.org/country/factsheet/uzbekistan). The most up-to-date version of this 
data was used (BirdLife International, 2024). Cells overlapping with these areas received the maximum 
value of sensitivity.  

Protected Areas  
We used the World Database on Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated by governments and curated by the UN Environment 
Programme's World Conservation Monitoring Centre (UNEP-WCMC), providing the most up-to-date 
information on protected areas. We used the latest version from 2024. All protected areas in Uzbekistan 
were included, regardless of their IUCN management category. As with IBAs, cells overlapping with these 
areas automatically received the maximum level of sensitivity.  

Special areas for birds 
Some areas in Uzbekistan are critically important for migratory species, such as bustards, as they provide 
ideal habitat conditions, migration stopover points, and breeding or wintering grounds that birds depend 
on (Burnside et al., 2016; Silva et al., 2022). Steppe and semi-desert habitats were mapped as well as 
specific sites important for Bustards (stopover points, wintering grounds, and main migratory flightways). 
As with IBAs, cells overlapping with these areas automatically received the maximum level of sensitivity.  

 

Identifying final sensitivity categories – STEP 5 
We categorised geographical sensitivity by applying the Jenk’s Natural Breaks algorithm (Natural breaks 
function, ArcGIS Pro; ESRI, 2023) to identify four categories, which we interpret as Low, Medium, High, and 
Very High bird sensitivity. Natural Breaks minimize the squared deviations of a group’s means and are a 
standard method for splitting spatial datasets. This produced a final bird sensitivity map in a format that 
provides meaningful visualization and is easier to interpret for a range of stakeholders in decision-making 
processes. 

 

Power Line – Medium and Low voltage 

Calculating species sensitivity – STEP 1 
Distribution lines primarily impact birds through collisions with overhead cables and electrocution on 
energy pylons and cables. Therefore, in addition to considering the species most sensitive to collision 
using the formula mentioned for the High-voltage lines (PwCo), a specific formula for calculating and 
identifying species sensitive to electrocution was also applied separately: 

      𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐸𝑙𝑒𝑐) × (𝐶𝑛𝑆)
(1−(

(𝑆𝑢+𝐸𝑛)
2

)/((
(𝑆𝑢+𝐸𝑛)

2
)+0.5))

 

 

To assess the species' sensitivity to electrocution, we used three main published reviews from Africa and 
Eurasia (Haas et al., 2003; Martín Martín et al., 2019; Prinsen et al., 2011). These reviews provide a 
classification at the family level of the main avifauna affected by electrical shock. Four broad categories 
were used to measure sensitivity: Category I = casualties reported, but no apparent threat to the bird 
population. Category II = regionally or locally high casualties, but with no significant impact on the overall 
species population. Category III = Casualties are a major mortality factor, threatening a species with 
extinction, either regionally or on a larger scale. To complement the assessment regarding global bird 

https://datazone.birdlife.org/country/factsheet/uzbekistan


96 
 

families, a systematic review looking for articles published about bird electrocutions with power lines was 
conducted on Web of Science. Slight differences were found in the classification for certain families, so we 
included each family in the following subcategories: 6 (III) = casualties are a major mortality factor, 
threatening a species with extinction, regionally or at a larger scale. 5 (between category II and III). 4 (II) 
regionally or locally high casualties, but with no significant impact on the overall species population. 3 
(between category II and I). 2 (I) casualties reported, but no apparent threat to the bird population. 1 No 
casualties reported or likely. The Supplementary Material contains bird families with their respective 
assessments. 

Conservation status (CnS), endemism (En), and annual adult survival (Su) were calculated in the same way 
as for the onshore wind sensitivity index.  

To combine the parameters above in the formula and balance their contribution to the sensitivity index, we 
standardized all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.2045 (see “AVISTEP_Uzbekistan_PW_Electrocution.xlsx” in 
Supplementary Material), corresponding to the top ~20% of all species per country. This threshold ensured 
that the most sensitive species were represented. Additionally, we assessed the list in collaboration with 
local bird experts, uplisting or downlisting species as necessary, based on their relevance to the national 
context for bird conservation. For Uzbekistan, we included 51 species as priority species due to their 
susceptibility to electrocution. To produce the final sensitivity scores, we normalized the values to a 0.01 
to 1 scale, emphasizing the much greater sensitivity of species in the top part of the list compared to those 
at the bottom (Critchley & Jessopp, 2019).  

The Supplementary Material contains 51 priority species with their respective information for different 
parameters. 

 

Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide, with a resolution of 
100x100m grid cells. The AOH maps represent the utilized habitats within a species’ range and can be 
considered an intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). 
These maps were created using a modelling approach based on remotely sensed land cover data, 
translated to species’ habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 
2022), and known maximum and minimum elevations. The AOH maps were created using binary 
information representing presence and absence, based solely on breeding, non-breeding, and resident 
distribution (for more details, see https://github.com/BirdLifeInternational/code_for_AOH). A raster layer 
was created for each species, representing the species' occurrence probability as the proportion of 
suitable habitat area in each grid cell. More specifically, since our assessment was conducted at a 5x5 km 
grid cell resolution, we transformed the original AOH maps to match our resolution, calculating the total 
percentage of AOH present in each cell. We also used occurrence points to refine the likelihood of 
occurring in each grid cell for each species from different sources: 1) Local bird experts compiled 
observational records for their respective countries from a range of sources (i.e., published, and 
unpublished literature, survey and project data, and a range of other sources) and 2) eBIRD data 
(https://ebird.org). To download and curate the datasets, we used the RStudio package auk (Strimas-
Mackey et al., 2018). To ensure the accuracy of the data, we have only included recent observations (2012-
2022) from eBIRD’s protocol, whether made while stationary or in transit. The maximum distance travelled 
was set to 7 km to ensure that all records were contained within the final ~ 5x5 km cells.  

https://github.com/BirdLifeInternational/code_for_AOH
https://ebird.org/
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Due to the scarcity of observational data for Uzbekistan, we assume the species has a very high probability 
of occurring in a grid cell if it has at least one occurrence of evidence that spatially overlaps with it. In these 
cases, we upgraded the cell value to the maximum value (=1), regardless of the amount of habitat available 
in the AOH surface.  

For a few species without AoH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead (BirdLife International 2021). We rasterised the 
polygons in a 5x5 km grid resolution. Due to the uncertainty about the occurrence of species in the ranges 
on a broad scale, we weighted all grid cells equally = 0.5, representing the 50% chance of the species 
occurring there. We also upgraded the grid cell to a maximum value when a survey point overlaps the raster 
surface. 

We adapted the formula by Bradbury et al. (2014) to weight the raster for each species by its respective 
sensitivity index and the amount of habitat in each grid cell. The final species sensitivity value (SI) was 
assigned for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty  
To provide information about the likelihood of the species' presence, we created a metric that combines 
the amount of AOH and the confirmed presence of the species in each grid cell. This categorical parameter 
has values ranging from 1 to 4 and reflects the evidence of the species' presence in that grid cell. The 
correspondence of the categories follows:  

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based solely on the BirdLife range maps, we created a comparable 
classification using the available information for those species. On these occasions, we assigned a generic 
value of 1 (low occurrence certainty) to the range area and a value of 3 (high occurrence certainty) to those 
grid cells where surveys confirmed the species' presence.  

 

Creating multispecies combination map – STEP 3 
We created a multispecies combination map by summing the sensitivity maps for all species. We create 
one map specific for collision (combining 59 species) and another for electrocution (combining 51 
species). For each map individually, the final score for each grid cell is the sum of the values of all species 
present in that cell. The bird sensitivity map captures the cumulative impact over the range of species 
present in each area. To make these maps comparable with the rest of the information sources, we 
normalized the values from 0 to 1.  

∑ 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠
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** Distribution lines considered maps from Collision and Electrocution, combining them and conserving 
the maximum value in each grid cell. As a precautionary approach, that means if a grid cell has a value of 
1 for electrocution but 0.5 for collision, the final grid cell value is 1. 

 

Adding other important areas for bird conservation – STEP 4 
Land Cover Land Use 
To mitigate the impact of renewable energy, it is crucial to focus development away from natural habitats 
and towards areas with low ecological value, such as those already heavily modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we utilized the Copernicus global land-cover dataset 
(https://lcviewer.vito.be/2019) and the discrete land cover classification, which comprises 23 classes at a 
spatial resolution of ~100 m (Buchhorn et al., 2020). We chose to use this dataset due to its high accuracy 
(average ~80%) and suitability for conservation (Jung et al., 2020).  

Uzbekistan has a unique biodiversity resulting from a combination of geographic, climatic, and ecological 
factors that make it distinct within Central Asia and globally. Based on this, we created a different hierarchy 
of weights to work with the various land cover classes, assigning greater relevance to classes that are more 
relevant for biodiversity and have undergone less human-induced change. Thus, we applied the Analytic 
Hierarchy Process (AHP) to contrast different land cover, and we set the following hierarchy of weights: all 
types of forests – open and closed, permanent water bodies, herbaceous wetland, moss and lichen had 
the maximum weight (grid cell received value of 100); following by Shrubs, Herbaceous vegetation, Bare, 
desert and sparse vegetation (grid cell received value of 32); Cultivated and managed 
vegetation/agriculture (cropland) (grid cell received value of 16); and Urban / built up - Land covered by 
buildings and other man-made structures (grid cell received value of 7). We then calculated the median 
value for each 5x5 cell to create an index that represents a proxy for inferring the value of biodiversity. In our 
scoring, cells with a higher percentage of natural areas will result in a higher sensitivity score. We combined 
the resulting land cover proxy map with the species cumulative map (step 3) using a Multicriteria Analysis 
(MCA) (Adem Esmail & Geneletti, 2018), weighting land cover proxy and species sensitivity according to 
bird expert opinion. Therefore, land cover was weighted as 0.4 (contributing 40% to the final layer), and 
priority species sensitivity was weighted as 0.6 (contributing 60% to the final layer). This final outcome was 
then normalized to a value between 0 and 1. 

Important Bird and Biodiversity Areas (IBAs)  
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. This dataset is curated by BirdLife International and available through 
website (https://datazone.birdlife.org/country/factsheet/uzbekistan). The most up-to-date version of this 
data was used (BirdLife International, 2024). Cells overlapping with these areas received the maximum 
value of sensitivity.  

Protected Areas  
We used the World Database on Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated by governments and curated by the UN Environment 
Programme's World Conservation Monitoring Centre (UNEP-WCMC), providing the most up-to-date 
information on protected areas. We used the latest version from 2024. All protected areas in Uzbekistan 
were included, regardless of their IUCN management category. As with IBAs, cells overlapping with these 
areas automatically received the maximum level of sensitivity.  

Special areas for birds 
Some areas in Uzbekistan are critically important for migratory species, such as bustards, as they provide 
ideal habitat conditions, migration stopover points, and breeding or wintering grounds that birds depend 

https://lcviewer.vito.be/2019
https://datazone.birdlife.org/country/factsheet/uzbekistan
http://www.protectedplanet.net/
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on (Burnside et al., 2015; Silva et al 2023). Steppe and semi-desert habitats were mapped as well as 
specific sites important for Bustards (stopover points, wintering grounds, and main migratory flightways). 
As with IBAs, cells overlapping with these areas automatically received the maximum level of sensitivity.  

 

Identifying final sensitivity categories – STEP 5 
We categorised geographical sensitivity by applying the Jenk’s Natural Breaks algorithm (Natural breaks 
function, ArcGIS Pro; ESRI, 2023) to identify four categories, which we interpret as Low, Medium, High, and 
Very High bird sensitivity. Natural Breaks minimize the squared deviations of a group’s means and are a 
standard method for splitting spatial datasets. This produced a final bird sensitivity map in a format that 
provides meaningful visualization and is easier to interpret for a range of stakeholders in decision-making 
processes. 

 

Solar Photovoltaic (PV) 

Calculating Sensitivity for all species occurring in the country – STEP 1 
The species-specific sensitivity based on different impacts created for the other types of energy 
developments does not apply to the context of solar photovoltaic energy. Although some species can 
indeed coexist with solar PV installations, we have used a precautionary approach, considering that the 
presence of solar photovoltaics would result in habitat loss and/or degradation for all species that occur in 
the area. 

We considered a list of all species occurring in the country, individually weighted by their respective 
Conservation Status (CnS - primary factor) and Endemicity (En - aggravating factor). For Uzbekistan, we 
worked with a total of 321 species. 

Conservation Status (CnS): We used the IUCN Red List categories from 2021 as follows: 5 = Critically 
Endangered (CR); 4 = Endangered (EN); 3 = Vulnerable (VU); 2 = Near Threatened (NT); 1 = Least Concern 
(LC) or Data Deficient (DD).  

Endemism (En): We calculated the percentage of the global distribution area inside each country's 
territory. To calculate this parameter, we used the distribution range maps (BirdLife International and The 
Handbook of the Birds of the World, 2021) and the global database of political boundaries GADM (Global 
Administrative Areas, 2021) in ArcGIS Pro (ESRI, 2023). To transform these values into categories from 1 to 
5, we used the following conversion criteria: 1 = 0-20%, 2 = >20-40%, 3 = >40-60%, 4 = >60-80%, 5 = >80-
100%. To standardise all metrics and make them comparable, we divided each by the maximum category 
value following recommendations from Certain et al. (2015). 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  (𝐶𝑛𝑆)(1−(𝐸𝑛)/((𝐸𝑛)+0.5))
    

 

Mapping the species distribution according to the Sensitivity – STEP 2 
We used the BirdLife range maps (BirdLife International 2021) to create a raster layer for the 321 species 
with a 5x5 km grid cell resolution. The respective species sensitivity value was weighted for each raster 
surface.  
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Creating a species richness map – STEP 3 
To create a surface representing the cumulative sensitivity (hereinafter, bird richness). we summed all the 
rasters in the same grid cell following the formula 

∑ (𝐶𝑛𝑆)(1−(𝐸𝑛)/((𝐸𝑛)+0.5))

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

    

 

Creating a layer with potential wilderness areas and adding important 
areas for bird conservation – STEP 4 
To identify zones where the development of solar farms may negatively impact biodiversity, we combined 
the bird richness surface with a human footprint surface (used as a proxy to infer wilderness). Accordingly, 
areas far from the site with high value for the human footprint index – HFI - (population density, built 
infrastructure such as roads, railways, factories, and night-time lights) would be less exposed to 
disturbance (Ascensão et al., 2023) and, therefore, consist of more relevant areas for bird conservation. 
We used HFI second generation of information with 300 m2 as resolution from 
https://wcshumanfootprint.org/ (data-access 31/10/2023). 

The bird richness surface was combined with the human footprint surface, both calculated in 5x5 km using 
Multicriteria Analysis. The human footprint surface was weighted as 0.4 (contributing with 40% for the final 
layer) and the bird richness sensitivity as 0.6 (contributing with 60% for the final layer). This final outcome 
was then normalized between zero and 1. 

The information for IBAs, protected areas, and Special areas for birds was the same as previously used for 
Wind farms and powerlines. To create the final sensitivity maps, we combined these datasets by retaining 
the maximum value from all overlapping cells. In this way, cells designated as IBAs, protected areas AND 
Important Areas for Birds, automatically received the maximum level of sensitivity (1), while all other cells 
will vary between 0 and 1 depending on their percentage on the trade-off between bird richness and human 
footprint layer.  

 

Identifying final sensitivity categories – STEP 5 
We categorized sensitivity by applying Jenk’s Natural Breaks algorithm to identify four categories, which we 
interpret as Low, Moderate, High, and Very High bird sensitivity. This produced a final and continuous bird 
sensitivity map in a format that is easier to understand and could be used by a range of stakeholders in 
decision-making processes. 

  

https://wcshumanfootprint.org/
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Wind Farm Onshore 

Calculating species sensitivity – STEP 1 
The respective national species lists to be assessed were created in agreement with BirdLife International, 
and bird experts from Nature Conservation Egypt (NCE), a BirdLife International partner. The sensitivity 
index was calculated for each regularly occurring bird species, excluding flightless, vagrant, rare sightings, 
and restricted seabirds. For Egypt, we calculated the sensitivity index for 330 bird species. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝐶𝑜 + (
𝐷𝑖

5
)) × (𝐶𝑛𝑆)

(1−(
𝑆𝑢+𝐸𝑛

2
)/((

𝑆𝑢+𝐸𝑛
2

)+0.5))

 

 

Collision (Co): To develop a metric that could identify the sensitivity of different taxonomic groups, we used 
a study by Thaxter et al. (2017). In this study, the authors analysed the ecological traits and phylogenetic 
characteristics that make different taxonomic groups more sensitive to collision. They assigned a collision 
probability to most land-bird species worldwide through a modelling approach. Based on the author’s 
recommendations, we summarised this value at the family level based on global number of species 
(average value). After that, we categorised this value in four categories (ranging from 1 and 4). These 
categories were calculated following a natural break classification algorithm, the corresponding values for 
each category were: 1(x < 0.028); 2 (0.028 < x < 0.043); 3 (0.043 < x < 0.059); 4 (x > 0.059). 

Displacement (Di): To classify the displacement, we referred to Hötker (2017), who reviewed all the 
evidence from scientific sources and 148 grey literature reports on displacement in birds to produce a 
metric for European birds. The paper reported the number of times a negative effect (e.g. displacement 
reported to reduce species abundance) or a positive effect or no effect had been found per species and, 
for those groups with enough samples, the statistical significance of this difference (binomial test). To 
produce a relevant metric, we assigned the following values to each species: 1 = Displacement never 
reported; 2 = Displacement reported in at least one study; 3 = Displacement more often reported, but 
differences not statistically significant; 4 = Displacement more often reported and differences statistically 
significant. The whole family received the value of the highest-scoring species included in that family. This 
precautionary approach was taken to ensure that phylogenetically closer species, which are more similar 
and have not been directly studied, could also be evaluated. To complement the assessment regarding bird 
families different from Europe, a systematic review looking for articles published about bird displacement 
was conducted on Web of Science using the terms: ((TS=(“wind*farm*” OR “onshore” OR “offshore” OR 
“wind*turbine*”)) AND TS=(“birds” OR “avian”)) AND TS=(“displacement” OR “avoidance” OR 
“space*use*”) from 2000 to 2024. In total, 24 families had displacement evidence at different levels. 
Accipitridae, Muscicapidae, Scolopacidae, Anatidae, and Charadriidae were the families with the highest 
displacement category. The Supplementary Material contains bird families with their respective 
displacement assessments. 

Conservation Status (CnS) was assigned at the species level using the IUCN Red List categories (2023) as 
follows: 5 = Critically Endangered (CR); 4 = Endangered (EN); 3 = Vulnerable (VU); 2 = Near Threatened (NT); 
1 = Least Concern (LC) or Data Deficient (DD). 

Annual adult survival (Su). We employed annual adult survival calculated for all bird species to include a 
metric that could capture life history factors (Bird et al., 2020). To transform these values into categories 
from 1 to 5, we used a natural breaks classification algorithm implemented in the RStudio package classes 
(Bivand, 2022). The corresponding values for each category were: 1 (x < 0.466); 2 (0.466 ≤ x < 0.559); 3 (0.559 
≤ x < 0.655); 4 (0.655 ≤ x < 0.775); 5 (x > 0.911). 

Endemism (En): We consider the level of endemism for each species as the percentage of the global 
distribution area inside each country’s territory. To calculate this parameter, we used the distribution range 
maps (BirdLife International & The Handbook of the Birds of the World, 2019) and the global database of 

https://www.natureegypt.org/
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political boundaries GADM (Global Administrative Areas, 2021) in ArcGIS Pro (ESRI, 2023). To transform 
these values into categories from 1 to 5, we used the following conversion criteria: 1 = 0-20%, 2 = >20-40%, 
3 = >40-60%, 4 = >60-80%, 5 = >80-100%. 

To combine the five parameters above in the formula, balancing their contribution to the sensitivity index, 
we standardised all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.339 (see “AVISTEP_Egypt_Onshore.xlsx” in Supplementary Material), 
corresponding to the top ~20% of all species per country. This threshold ensured that the most sensitive 
species were represented. Additionally, conducting workshop with bird experts, we assessed the list, 
uplisting or downlisting species, if necessary, according to their relevance to the national context for bird 
conservation. For Egypt, we included 64 species as priority species regarding the wind farms onshore 
impacts. To produce the final sensitivity scores, we normalised the values to a 0.01 to 1 scale in order to 
emphasise the much greater sensitivity of species in the top part of the list compared to the species at the 
bottom (Critchley & Jessopp, 2019). 

The Supplementary Material contains 64 priority species with their respective information for different 
parameters. 

 

Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide in 100x100m grid cells as 
resolution. The AOH maps represent the utilised habitats within a species’ range and can be considered an 
intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). These maps 
were created using a modelling approach based on remotely sensed land cover data translated to species’ 
habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 2022) and known 
maximum and minimum elevation. The AOH maps were created using binary information representing 
presence and absence, and only based on breeding, non-breeding, and resident distribution (more details 
in https://github.com/BirdLifeInternational/code_for_AOH). A raster layer for each species was created, 
representing the species occurrence probability described by the proportion of area of suitable habitat in 
each grid cell. More specifically, since our assessment was in a 5x5 km grid cell resolution, we transformed 
the original AOH maps to our resolution, calculating the total percentage of AOH present in each cell. We 
also used occurrence points to refine the likelihood of occurring in each grid cell for each species from 
different sources: 1) Local bird experts compiled observational records for their respective countries from 
a range of sources (i.e., published, and unpublished literature, survey and project data, and a range of other 
sources) and 2) eBIRD data. To guarantee the accuracy of the data, we only included recent observations 
(2013 to 2024) that came from eBIRD’s protocol, whether stationary or travelling. The maximum distance 
travelled was set to 7 km to ensure that all records were contained within the final ~ 5x5 km cells. 

Due to the scarcity of observational data for Egypt, we assume the species has a very high probability of 
occurring in a grid cell if it has at least one occurrence of evidence spatially overlapping it. In these cases, 
we upgraded the cell value to the maximum value (=1), regardless of the amount of habitat available in the 
AOH surface. 

For 16 species without AOH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead (BirdLife International 2021). We rasterised the 
polygons into a 5x5 km grid resolution. Due to the uncertainty about the occurrence of species in the ranges 
in their broad scale, we weighted all grid cells equally = 0.5, representing the 50% change to have or not the 
species occurring there. We also upgraded the grid cell to a maximum value when a survey point overlaps 
the raster surface. 

https://github.com/BirdLifeInternational/code_for_AOH
https://ebird.org/
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We adapted the Bradbury et al. (2014) formula to weight the raster for each species by its respective 
sensitivity index and amount of habitat in each grid cell. The final species sensitivity value (SI) was assigned 
for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ln(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty 
To provide information about the species’ presence likelihood, we created a metric combining the amount 
of AOH and the confirmed presence of the species in each grid cell. This categorical parameter has values 
ranging from 1 to 4 and reflects the evidence of the presence of the species in that grid cell. The 
correspondence of the categories follows: 

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based just on the BirdLife range maps, we created a comparable classification 
based on the information available for those species. On these occasions, we gave the range area a generic 
value of 1 (low occurrence certainty) and a value of 3 (high occurrence certainty) to those grid cells where 
surveys confirmed the species’ presence. 

 

Creating multispecies combination map – STEP 3 
We created a multispecies combination map by summing up all species-specific sensitivity maps. For 
Egypt, we combined 64 priority species’ rasters. Thus, the final score for each grid cell is the result of the 
summed values of all the species present in that cell. The bird sensitivity map captures the cumulative 
impact over the range of species present in each area. To make these maps comparable with the rest of the 
sources of information, we normalised the values from 0 to 1. 

∑ 𝑙

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

** Distribution lines considered maps from Collision and Electrocution, combining them and conserving 
the maximum value in each grid cell. That means if a grid cell has a value of 1 for electrocution but 0.5 for 
collision, the final grid cell value is 1. 

 

Adding other important areas for bird conservation – STEP 4 
Understanding Egyptian landbird movement is critically essential to ensure that sensitivity maps 
accurately represent crucial stopover wetlands and do not misrepresent aerial connectivity between 
breeding and feeding grounds. For onshore, we developed a layer to represent the movement of landbirds 
over Egyptian, combining two main approaches: 
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Approximate migration corridor based on range maps - based on Bird Tracking Data 
Raw animal tracking data for migratory birds were collected from published studies, author-provided 
datasets, and Movebank (www.movebank.org). After assessing the Movebank data, we included only GPS 
fixes with timestamps for 14 species (Caspian Tern - Hydroprogne caspia, Eastern Imperial Eagle - Aquila 
heliaca, Egyptian Vulture - Neophron percnopterus, Eleonora’s Falcon - Falco eleonorae, European Honey-
buzzard - Pernis apivorus, Great White Pelican - Pelecanus onocrotalus, Greater Spotted Eagle - Clanga 
clanga, Griffon Vulture - Gyps fulvus, Lesser Black-backed Gull - Larus fuscus, Lesser Spotted Eagle - 
Clanga pomarina, Osprey - Pandion haliaetus, Short-toed Snake-eagle - Circaetus gallicus, Steppe Eagle - 
Aquila nipalensis, White Stork - Ciconia ciconia). We followed steps according to the Track2KBA R package 
as follows. To clean the data, we removed duplicate records and ran a McConnel speed filter. To obtain 
locations at regular intervals required for kernel density analysis, we interpolated each track to a regular 
time interval specific to each species using linear interpolation in time. Trips with fewer than five valid fixes 
were excluded. Data from stationary periods associated with capture, breeding or local roosting were also 
removed to focus on migratory or passage movements. Following interpolation, each individual’s track was 
segmented into discrete movement trips using buffers of 3 km (departure) and 10 km (return) around a 
location outside of the study area. This delineation enabled the identification of outbound and inbound 
flights within the broader context of migratory movements. We cropped the tracks to the study area for land 
and sea plus a buffer larger than the smoothing parameter. All pre-processed data were visually inspected 
for trajectory continuity, geographic plausibility, and temporal regularity before being included in species-
level modelling. For each species, we then used kernel density estimation (KDE) in the adehabitatHR R 
package to convert point locations into a 5x5km grid representing the density of time spent by tracked birds. 
The smoothing parameters used for kernel densities were determined according to bird behaviour (larger 
smoothing parameters were used for species that travel further and faster than others) and the accuracy 
of the data available. We then cropped the rasters to the study area and rescaled the values to have a 
maximum value of 1. The resulting dataset represented standardised, quality-controlled movement 
records suitable for estimating species flyways and composite sensitivity indices across Egypt. 

The 14 individual species rasters were combined, weighted according to their respective species sensitivity 
index. 

Approximate migration corridor based on range maps - passage area 
Given the number of species for which telemetry data are available, species distribution polygons were 
compiled from the IUCN Red List database, with a focus on passage range classifications. Polygons were 
dissolved into a single multipart geometry per species. In total, only 109 species had a passage area 
delineated over Egypt. To match the extent of movement analyses, all polygons were clipped to the Egyptian 
region of interest (ROI). Each species’ polygon was rasterised to the 5 km grid, producing binary presence 
rasters that represented passage areas. Each resultant raster was weighted according to the previous set 
of conservation status values. The range rasters were combined into a multi-species stack (summed). The 
final output was normalised presence rasters (score 0 - 1), representing a range-based proxy for migratory 
flyway use across the Egyptian region. 

Both the Passage Areas and Migratory Corridor maps were rescaled into 0 and 1 and combined by 
maximum value, resulting in a final ‘migratory’ layer. Then, to compose a unique Bird Sensitivity map, we 
combined the Final Species Sensitivity map with the Final Migratory layer, giving both the same weight – 
50% of the contribution each, according to the formula: 

𝐹𝑖𝑛𝑎𝑙 𝐵𝑖𝑟𝑑 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = (𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑚𝑎𝑝 × 0.5) + (𝐹𝑖𝑛𝑎𝑙 𝑀𝑖𝑔𝑟𝑎𝑡𝑜𝑟𝑦 𝑙𝑎𝑦𝑒𝑟 × 0.5) 

 

Land Cover/Land Use 
To mitigate the impact of renewable energy, it is crucial to focus development away from natural habitats 
and towards areas with low ecological value, such as those already heavily modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we utilised the Copernicus global land-cover dataset and the discrete 

http://www.movebank.org/
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land cover classification, which comprises 23 classes at a spatial resolution of ~100 m (Buchhorn et al., 
2020). We chose to use this dataset due to its high accuracy (average ~80%) and suitability for conservation 
(Jung et al., 2020). 

Egypt has a unique biodiversity resulting from a combination of geographic, climatic, and ecological 
factors, with a considerable part of his territory being desert or bare sand. Based on this, we created a 
different hierarchy of weights to work with the various land cover classes, assigning greater relevance to 
classes that are more relevant to biodiversity and have undergone less human-induced change. We also 
added a water incidence layer summarising annual precipitation (Fick & Hijmans, 2017) and months when 
water is present (Pekel et al., 2016). 

We applied the Analytic Hierarchy Process (AHP) to contrast different land cover, and we set the following 
hierarchy of weights: all types of forests – open and closed, permanent water bodies, herbaceous wetland, 
Shrubs, Herbaceous vegetation, moss and lichen had the maximum weight (grid cell received value of 100) 
cultivated and managed vegetation was also included as maximum value due to its relevance for birds in 
the Egyptian context; following by Bare, desert and sparse vegetation (grid cell received value of 45); and 
Urban / built up - Land covered by buildings and other man-made structures (grid cell received value of 8). 
We then calculated the median value for each 5x5 cell to create an index that represents a proxy for inferring 
the value of biodiversity. In our scoring, cells with a higher percentage of natural areas will result in a higher 
sensitivity score. We combined the resulting land cover proxy map with the final water incidence layer to 
create a final landcover map giving both the same weight. This map was then combined with the species 
cumulative map (step 3) conserving the maximum value between the two layers. This final outcome was 
then normalised to a value between 0 and 1. 

 

Identifying final sensitivity categories – STEP 5 
Classifying the sensitivity value into categories 
We categorised geographical sensitivity by applying the Jenk’s Natural Breaks algorithm (Natural Breaks 
algorithm (Natural breaks function, ArcGIS Pro; ESRI, 2023) to classify sensitivity values across grid cells 
into four classes, which we interpret as Low (1), Medium (2), High (3), and Very High (4) bird sensitivity. 
Natural Breaks minimise the squared deviations of a group’s means and are a standard method for splitting 
spatial datasets. The map shows the four final bird sensitivities in a format that provides meaningful 
visualisation and is easier to interpret for a range of stakeholders in decision-making processes. 

Including Additional key areas 
Additional key areas are considered as those already designated for bird conservation purposes or for 
conservation of their habitats, regardless of whether they focus on a priority species concerning the 
impacts of energy infrastructure. Examples include Protected Areas (PAs) and Important Bird and 
Biodiversity Areas (IBAs). 

Important Bird and Biodiveristy Areas (IBAs) 
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. This dataset is curated by BirdLife International and available through 
website (https://datazone.birdlife.org/country/factsheet/egypt). The most up-to-date version of this data 
was used (BirdLife International, 2024). In some instances, proposed IBAs and areas not identified as IBAs 
but nonetheless known to be of global significance for at-risk bird species were also included. Cells 
overlapping with these areas received the maximum value of sensitivity. 

Protected Areas 
We used the World Database on Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated by governments and curated by the UN Environment 
Programme World Conservation Monitoring Centre (UNEP-WCMC) and includes the most up-to-date 
information on protected areas. We used the latest version from 2024. All protected areas were included 

http://www.protectedplanet.net/
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for Egypt, regardless of their IUCN management category. As with IBAs, cells overlapping with these areas 
automatically received the maximum level of sensitivity. 

All the above information was rasterised in a resolution of 5km2. We combined additional key areas with 
very high sensitivity value (assigned the maximum value of 4) into the final sensitivity layer, which already 
contained four categories. For each grid cell, the highest sensitivity value was retained. As a result, cells 
with lower initial sensitivity that overlapped spatially with these additional key areas were upgraded to the 
maximum sensitivity value. This approach ensures that areas already recognised as important for bird 
conservation receive the highest sensitivity rating and are avoided from energy planning. Likewise, areas 
previously classified as highly sensitive remain so when overlapping with additional key areas. 

 

Power Line – High voltage 

Calculating species sensitivity – STEP 1 
The sensitivity index was calculated for each regularly occurring bird species, excluding flightless, vagrant, 
rare sightings, and restricted seabirds. For Egypt, we calculated the sensitivity index for 330 bird species.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐶𝑜) × (𝐶𝑛𝑆)
(1−(

(𝑆𝑢+𝐸𝑛)
2

)/((
(𝑆𝑢+𝐸𝑛)

2
)+0.5))

 

 

Collision with energy cables (PwCo). Bird collisions occur during flight when birds fail to see the overhead 
wires. They represent a significant source of anthropogenic bird mortality (Loss et al., 2014) and are 
responsible for the decline of different populations (Biasotto & Kindel, 2018). Bird-related taxa typically 
show similar levels of sensitivity to collisions since they have a strong phylogenetic signal (Prinsen et al., 
2011). 

To assess the species’ sensitivity to overhead collision, we used three main published reviews from Africa 
and Eurasia (Haas et al., 2003; Martín Martín et al., 2019; Prinsen et al., 2011). These reviews provide a 
classification at the family level of the main avifauna affected by collision. Four broad categories were used 
to measure sensitivity: Category I = casualties reported, but no apparent threat to the bird population. 
Category II = regionally or locally high casualties, but with no significant impact on the overall species 
population. Category III = casualties are a major mortality factor, threatening a species with extinction, 
regionally or at a larger scale. To complement the assessment regarding global bird families, a systematic 
review looking for articles published about bird collisions with power lines was conducted on Web of 
Science. Slight differences were found in the classification for certain families, so we included each family 
in the following subcategories: 6 (III) = casualties are a major mortality factor, threatening a species with 
extinction, regionally or at a larger scale. 5 (between category II and III). 4 (II) regionally or locally high 
casualties, but with no significant impact on the overall species population. 3 (between category II and I). 
2 (I) casualties reported, but no apparent threat to the bird population. 1 No casualties reported or likely. 
The Supplementary Material contains bird families with their respective assessments. 

Conservation status (CnS), endemism (En), and annual adult survival (Su) were calculated in the same way 
as for the onshore wind sensitivity index. 

To combine the parameters in the formula and balance their contribution to the sensitivity index, we 
standardised all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.321 (see “AVISTEP_Egypt_PW_Collision.xlsx” in Supplementary 
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Material), corresponding to the top ~20% of all species per country. This threshold ensured that the most 
sensitive species were represented. Additionally, conducting workshop with local bird experts, we 
assessed the list, uplisting or downlisting species, if necessary, according to their relevance to the national 
context for bird conservation. For Egypt, we included 54 species as priority species regarding the collision 
with power lines. To produce the final sensitivity scores, we normalised the values to a 0.01 to 1 scale in 
order to emphasise the much greater sensitivity of species in the top part of the list compared to the 
species at the bottom (Critchley & Jessopp, 2019). 

The Supplementary Material contains 54 priority species with their respective information for different 
parameters. 

 

Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide in 100x100 m grid cells 
as resolution. The AOH maps represent the utilised habitats within a species’ range and can be considered 
an intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). These maps 
were created using a modelling approach based on remotely sensed land cover data translated to species’ 
habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 2022) and known 
maximum and minimum elevation. The AOH maps were created using binary information representing 
presence and absence, and only based on breeding, non-breeding, and resident distribution (more details 
in https://github.com/BirdLifeInternational/code_for_AOH). A raster layer for each species was created, 
representing the species occurrence probability described by the proportion of area of suitable habitat in 
each grid cell. More specifically, since our assessment was in a 5x5 km grid cell resolution, we transformed 
the original AOH maps to our resolution, calculating the total percentage of AOH present in each cell. We 
also used occurrence points to refine the likelihood of occurring in each grid cell for each species from 
different sources: 1) Local bird experts compiled observational records for their respective countries from 
a range of sources (i.e., published, and unpublished literature, survey and project data, and a range of other 
sources) and 2) eBIRD data. To guarantee the accuracy of the data, we only included recent observations 
(2013 to 2024) that came from eBIRD’s protocol, whether stationary or travelling. The maximum distance 
travelled was set to 7 km to ensure that all records were contained within the final ~ 5x5 km cells. 

Due to the scarcity of observational data for Egypt, we assume the species has a very high probability of 
occurring in a grid cell if it has at least one occurrence of evidence spatially overlapping it. In these cases, 
we upgraded the cell value to the maximum value (=1), regardless of the amount of habitat available in the 
AOH surface. 

For 12 species without AOH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead (BirdLife International 2021). We rasterised the 
polygons in a 5x5 km grid resolution. Due to the uncertainty about the occurrence of species in the ranges 
in their broad scale, we weighted all grid cells equally = 0.5, representing the 50% change to have or not the 
species occurring there. We also upgraded the grid cell to a maximum value when a survey point overlaps 
the raster surface. 

We adapted the Bradbury et al. (2014) formula to weight the raster for each species by its respective 
sensitivity index and amount of habitat in each grid cell. The final species sensitivity value (SI) was assigned 
for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ln(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty 
To provide information about the species’ presence likelihood, we created a metric combining the amount 
of AOH and the confirmed presence of the species in each grid cell. This categorical parameter has values 

https://github.com/BirdLifeInternational/code_for_AOH
https://ebird.org/
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ranging from 1 to 4 and reflects the evidence of the presence of the species in that grid cell. The 
correspondence of the categories follows: 

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based just on the BirdLife range maps, we created a comparable classification 
based on the information available for those species. On these occasions, we gave the range area a generic 
value of 1 (low occurrence certainty) and a value of 3 (high occurrence certainty) to those grid cells where 
surveys confirmed the species’ presence. 

 

Creating multispecies combination map – STEP 3 
We created a multispecies combination map by summing up all species-specific sensitivity maps. For 
Egypt, we combined 54 priority species’ rasters. Thus, the final score for each grid cell is the result of the 
summed values of all the species present in that cell. The bird sensitivity map captures the cumulative 
impact over the range of species present in each area. To make these maps comparable with the rest of the 
sources of information, we normalised the values from 0 to 1. 

∑ ln

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼 

 

Adding other important areas for bird conservation – STEP 4 
Land Cover Land Use 
To limit the impact of renewable energy, it is important to target development away from natural habitats 
and towards areas with low ecological value, such as those already highly modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we used the Copernicus global land-cover and the discrete land cover 
classification, which includes 23 classes at a ~100 m spatial resolution (Buchhorn et al., 2020). We chose 
to use this dataset for its high accuracy (average ~80%) and its suitability for conservation (Jung et al., 
2020). First, we reclassified all land cover classes to have a value of 1 except for cropland and urban/built 
up areas which received a value of 0. We then calculated the percentage of natural areas present in each 
5x5 km cell following a similar procedure as for distribution areas. In our scoring, cells with a higher 
percentage of natural areas will result in a higher sensitivity score. We combined the resulting land cover 
proxy map with the species cumulative map (step 3) using a Multicriteria Analysis (MCA) (Adem Esmail & 
Geneletti, 2018), weighting land cover proxy and species sensitivity according to bird expert opinion. So, 
land cover was weighted as 0.2 (contributing with 20% for the final layer) and priority species sensitivity as 
0.8 (contributing with 80% for the final layer). This final outcome was then normalised between zero and 1.  
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Identifying final sensitivity categories – STEP 5 
We followed the same approach as for onshore wind farms. Go to STEP 5 to read more. 

 

Power Line – Medium and Low voltage 

Calculating species sensitivity – STEP 1 
Distribution lines impact birds mainly through collision with overhead cables and electrocution on energy 
pylons. Therefore, in addition to considering the species most sensitive to collision using the formula 
mentioned for the High-voltage lines (PwCo), a specific formula for calculating and identifying species 
sensitive to electrocution was also applied separately: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐸𝑙𝑒𝑐) × (𝐶𝑛𝑆)
(1−(

(𝑆𝑢+𝐸𝑛)
2

)/((
(𝑆𝑢+𝐸𝑛)

2
)+0.5))

 

 

To assess the species’ sensitivity to electrocution, we used three main published reviews from Africa and 
Eurasia (Haas et al., 2003; Martín Martín et al., 2019; Prinsen et al., 2011). These reviews provide a 
classification at the family level of the main avifauna affected by electrical shock. Four broad categories 
were used to measure sensitivity: Category I = casualties reported, but no apparent threat to the bird 
population. Category II = regionally or locally high casualties, but with no significant impact on the overall 
species population. Category III = casualties are a major mortality factor, threatening a species with 
extinction, regionally or at a larger scale. To complement the assessment regarding global bird families, a 
systematic review looking for articles published about bird electrocutions with power lines was conducted 
on Web of Science. Slight differences were found in the classification for certain families, so we included 
each family in the following subcategories: 6 (III) = casualties are a major mortality factor, threatening a 
species with extinction, regionally or at a larger scale. 5 (between category II and III). 4 (II) regionally or 
locally high casualties, but with no significant impact on the overall species population. 3 (between 
category II and I). 2 (I) casualties reported, but no apparent threat to the bird population. 1 No casualties 
reported or likely. The Supplementary Material contains bird families with their respective assessments.  

Conservation status (CnS), endemism (En), and annual adult survival (Su) were calculated in the same way 
as for the onshore wind sensitivity index. 

To combine the parameters above in the formula and balance their contribution to the sensitivity index, we 
standardised all values from 0 to 1 by dividing each parameter by its maximum value, following 
recommendations from Certain et al. (2015). 

To choose the final list of species to be included in the assessment, we ranked all species by country 
according to their sensitivity values. To avoid that considering several species with a lower index could add 
up to a greater sensitivity than a few species with high sensitivity, we decided to work with only those 
species with a sensitivity index of ≥ 0.204 (see “AVISTEP_Egypt_PW_Electrocution.xlsx” in Supplementary 
Material), corresponding to the top ~20% of all species per country. This threshold ensured that the most 
sensitive species were represented. Additionally, conducting workshop with local bird experts, we 
assessed the list, uplisting or downlisting species, if necessary, according to their relevance to the national 
context for bird conservation. For Egypt, we included 58 species as priority species regarding the 
electrocution with power lines. To produce the final sensitivity scores, we normalised the values to a 0.01 
to 1 scale in order to emphasise the much greater sensitivity of species in the top part of the list compared 
to the species at the bottom (Critchley & Jessopp, 2019). 

The Supplementary Material contains 58 priority species with their respective information for different 
parameters. 
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Mapping the distribution area for priority species – STEP 2 
We used the area of habitat (AOH) maps created for most bird species worldwide in 100x100 m grid cells 
as resolution. The AOH maps represent the utilised habitats within a species’ range and can be considered 
an intermediate step between the Extent of Occurrence (EOO) and Area of Occupancy (AOO). These maps 
were created using a modelling approach based on remotely sensed land cover data translated to species’ 
habitat preferences according to the IUCN Red List Assessments (Lumbierres et al., 2022) and known 
maximum and minimum elevation. The AOH maps were created using binary information representing 
presence and absence, and only based on breeding, non-breeding, and resident distribution (more details 
in https://github.com/BirdLifeInternational/code_for_AOH). A raster layer for each species was created, 
representing the species occurrence probability described by the proportion of area of suitable habitat in 
each grid cell. More specifically, since our assessment was in a 5x5 km grid cell resolution, we transformed 
the original AOH maps to our resolution, calculating the total percentage of AOH present in each cell. We 
also used occurrence points to refine the likelihood of occurring in each grid cell for each species from 
different sources: 1) Local bird experts compiled observational records for their respective countries from 
a range of sources (i.e., published, and unpublished literature, survey and project data, and a range of other 
sources) and 2) eBIRD data. To guarantee the accuracy of the data, we only included recent observations 
(2013 to 2024) that came from eBIRD’s protocol, whether stationary or travelling. The maximum distance 
travelled was set to 7 km to ensure that all records were contained within the final ~ 5x5 km cells. 

Due to the scarcity of observational data for Egypt, we assume the species has a very high probability of 
occurring in a grid cell if it has at least one occurrence of evidence spatially overlapping it. In these cases, 
we upgraded the cell value to the maximum value (=1), regardless of the amount of habitat available in the 
AOH surface. 

For 12 species without AOH maps (species with just passage area inside the country) but still regularly 
occurring, we used the BirdLife range maps instead (BirdLife International 2021). We rasterised the 
polygons in a 5x5 km grid resolution. Due to the uncertainty about the occurrence of species in the ranges 
in their broad scale, we weighted all grid cells equally = 0.5, representing the 50% change to have or not the 
species occurring there. We also upgraded the grid cell to a maximum value when a survey point overlaps 
the raster surface. 

We adapted the Bradbury et al. (2014) formula to weight the raster for each species by its respective 
sensitivity index and amount of habitat in each grid cell. The final species sensitivity value (SI) was assigned 
for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ln(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑛 𝑡ℎ𝑒 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 + 1) ∗ 𝑆𝐼 

 

Species occurrence certainty 
To provide information about the species’ presence likelihood, we created a metric combining the amount 
of AOH and the confirmed presence of the species in each grid cell. This categorical parameter has values 
ranging from 1 to 4 and reflects the evidence of the presence of the species in that grid cell. The 
correspondence of the categories follows: 

Low occurrence certainty. The percentage of AOH is < 50%, and the occurrence is not confirmed by on-
the-ground surveys (1). 

Medium occurrence certainty. The percentage of AOH is > 50%, and the occurrence is not confirmed by 
on-the-ground surveys (2). 

High occurrence certainty. The percentage of AOH is < 50%, and the occurrence is confirmed by on-the-
ground surveys (3). 

https://github.com/BirdLifeInternational/code_for_AOH
https://ebird.org/


115 
 

Very high occurrence certainty. The percentage of AOH is> 50%, and the occurrence is confirmed by on-
the-ground surveys (4). 

For those distribution maps based just on the BirdLife range maps, we created a comparable classification 
based on the information available for those species. On these occasions, we gave the range area a generic 
value of 1 (low occurrence certainty) and a value of 3 (high occurrence certainty) to those grid cells where 
surveys confirmed the species’ presence. 

 

Creating multispecies combination map – STEP 3 
We created a multispecies combination map by summing up all species-specific sensitivity maps. We 
create one map specific for collision (combining 54 species) and another for electrocution (combining 58 
species). Thus, the final score for each grid cell is the result of the summed values of all the species present 
in that cell. The bird sensitivity map captures the cumulative impact over the range of species present in 
each area. To make these maps comparable with the rest of the sources of information, we normalised the 
values from 0 to 1. 

∑ ln

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼 

** Distribution lines considered maps from Collision and Electrocution, combining them and conserving 
the maximum value in each grid cell. That means if a grid cell has a value of 1 for electrocution but 0.5 for 
collision, the final grid cell value is 1. 

 

Adding other important areas for bird conservation – STEP 4 
Land Cover Land Use 
To limit the impact of renewable energy, it is important to target development away from natural habitats 
and towards areas with low ecological value, such as those already highly modified by human activity 
(Kiesecker et al., 2019). For this purpose, we used land cover data to identify human-altered areas with 
lower ecological value. Specifically, we used the Copernicus global land-cover and the discrete land cover 
classification, which includes 23 classes at a ~100 m spatial resolution (Buchhorn et al., 2020). We chose 
to use this dataset for its high accuracy (average ~80%) and its suitability for conservation (Jung et al., 
2020). First, we reclassified all land cover classes to have a value of 1 except for cropland and urban/built 
up areas which received a value of 0. We then calculated the percentage of natural areas present in each 
5x5 km cell following a similar procedure as for distribution areas. In our scoring, cells with a higher 
percentage of natural areas will result in a higher sensitivity score. We combined the resulting land cover 
proxy map with the species cumulative map (step 3) using a Multicriteria Analysis (MCA) (Adem Esmail & 
Geneletti, 2018), weighting land cover proxy and species sensitivity according to bird expert opinion. So, 
land cover was weighted as 0.2 (contributing with 20% for the final layer) and priority species sensitivity 
(the maps merging collision and electrocution) as 0.8 (contributing with 80% for the final layer. This final 
outcome was then normalised between zero and 1. 

 

Identifying final sensitivity categories – STEP 5 
We followed the same approach as for onshore wind farms. Go to STEP 5 to read more. 
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Solar Photovoltaic (PV) 

Calculating Sensitivity for all species occurring in the country – STEP 1 
The species-specific sensitivity based on different impacts created for the other types of energy 
developments does not apply to the context of solar photovoltaic energy. We have used a precautionary 
approach, considering that the presence of solar photovoltaics would result in habitat loss and/or 
degradation for all species that occur in the area, although some species can indeed coexist with solar PV 
installations. 

We considered a list of all species occurring in the country, individually weighted by their respective 
Conservation Status (CnS - primary factor) and Endemicity (En - aggravating factor). For Egypt, we worked 
with 330 species in total. 

Conservation Status (CnS): We used the IUCN Red List categories from 2021 as follows: 5 = Critically 
Endangered (CR); 4 = Endangered (EN); 3 = Vulnerable (VU); 2 = Near Threatened (NT); 1 = Least Concern 
(LC) or Data Deficient (DD). 

Endemism (En): We calculated the percentage of the global distribution area inside each country’s 
territory. To calculate this parameter, we used the distribution range maps (BirdLife International & The 
Handbook of the Birds of the World, 2019) and the national boundaries (Global Administrative Areas, 2021) 
in ArcGIS Pro (ESRI, 2023). To transform these values into categories from 1 to 5, we used the following 
conversion criteria: 1 = 0-20%, 2 = > 20-40%, 3 = > 40-60%, 4 = > 60-80%, 5 = > 80-100%. To standardise all 
metrics and make them comparable, we divided each by the maximum category value following 
recommendations from Certain et al. (2015). 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (𝐶𝑛𝑆)
(1−(𝐸𝑛)/((𝐸𝑛)+0.5)) 

 

Mapping the species distribution according to the Sensitivity – STEP 2 
We used the BirdLife range maps (BirdLife International 2021) to create a raster layer for the 330 species 
with a 5x5 km grid cell resolution. The respective species sensitivity value weighted each raster surface.  

 

Creating a species richness map – STEP 3 
To create a surface representing the cumulative sensitivity, we summed all the raster in the same grid cell 
following the formula 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = ∑ (𝐶𝑛𝑆)
(1−(𝐸𝑛)/((𝐸𝑛)+0.5))

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

 

Creating a layer with potential wilderness areas and adding important 
areas for bird conservation – STEP 4 
To identify zones where the development of solar farms may negatively impact biodiversity, we first 
combined the bird richness surface with land cover information, using the same set of criteria as in 
previous infrastructures, while conserving the maximum value between the two layers. This final Bird 
Conservation layer was then combined with a human footprint surface (used as a proxy to infer wilderness). 
Accordingly, areas far from the site with high value for the human footprint index (population density, built 
infrastructure such as roads, railways, factories, and night-time lights) would be less exposed to 
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disturbance (Ascensão et al., 2023) and, therefore, consist of more relevant areas for bird conservation. 
We used HFI second generation of information with 300 m2 as resolution from 
https://wcshumanfootprint.org/ (data-access 31/10/2023). 

The final bird conservation layer was combined with the human footprint surface, both calculated in 5x5km 
using Multicriteria Analysis. The human footprint surface was weighted as 0.2 (contributing with 20% for 
the final layer) and the bird richness sensitivity as 0.8 (contributing with 80% for the final layer). This final 
outcome was then normalised between zero and 1. 

 

Identifying final sensitivity categories – STEP 5 
We followed the same approach as for onshore wind farms. Go to STEP 5 to read more. 

 

Offshore Wind 

Delineate Area of Interest (AOI) – STEP 1 
The first step in our offshore sensitivity analysis was delineating our Area of Interest (AOI). The offshore 
limits of the analysis (AOI) were set to the extent of the Exclusive Economic Zone (EEZ) in Egypt. This is done 
to facilitate incorporating the sensitivity map into future discussions about marine spatial planning and 
management of activities in the EEZ.  

  

Identifying Species for Analysis – STEP 2 

Collating the seabird species list for the AOI of a region is a process that we validate with local partners and 
experts where available. The flow chart below shows the range of sources we consider before a species is 
ultimately included or excluded (Figure 1).  

For Egypt, all available range maps for species overlapping with the EEZ were considered. A literature 
review was carried out along with a review of available observation records (for example, eBird) to 
determine any additional species to be considered. Some birds listed as seabirds can exhibit both marine 
and onshore activity in their ranges (for example, species such as Cormorants, Terns and Grebes). For these 
groups, their distribution was checked within the AOI. In total, 31 species were identified for the offshore 
sensitivity analysis in Egypt.  

https://wcshumanfootprint.org/
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Figure 1: Flowchart of the decision-making process for seabird species selection in AVISTEP offshore analysis. The 
process starts with key sources (in red), additional corroborating sources are in yellow, country-specific distribution 
requirements are in blue. The process ends with a species being included or excluded from the species list.  

 

Calculating Sensitivity for all Selected Species– STEP 3 

Following the identification of species for analysis, sensitivity was calculated for all listed species. We 
estimated the individual risk factors collision (Co) and displacement (Di), along with the population level 
risk conservation status (CnS). Using a trait-based approach, estimated a level of sensitivity for individual 
species. As with previous projects, collision and displacement were calculated separately for offshore 
(Furness et al., 2013). These were combined with a conservation score (CnS) to create an overall sensitivity 
to both collision and displacement. 

For each risk, all contributing factors were divided into primary and aggravating factors. Primary factors are 
inherently risky behaviour, traits, or demographic parameters that directly contribute to a species’ 
sensitivity. Aggravating factors exacerbate an existing risk but have no inherent risk of their own (Certain et 
al., 2015).  

We used a modified version of the sensitivity index developed by Certain et al. (2015) for sensitivity mapping 
in relation to offshore energy. This methodology has been used in similar exercises for Ireland (Critchley & 
Jessopp, 2019) and Scotland (Searle et al., 2019). In turn, this index is a renewed version of one created by 
Garthe & Hüppop (2004) who pioneered this field of work. The main innovation of this methodology is the 
differentiation between primary and aggravation factors. Primary factors are species characteristics that 
directly control the vulnerability, while aggravation factors are those that can increase a vulnerability that 
already exists (Certain et al., 2015). These differences between factors are therefore incorporated in the 
mathematical formulation of the indices. Although we mostly based our work on this methodology, we 
incorporated concepts, information and methods from other works like Bradbury et al. (2014), Furness et 
al. (2013), and Kelsey et al. (2018). Moreover, most of the information for scoring the different parameters 
by species came from Bradbury et al. (2014), Certain et al. (2015), Critchley & Jessopp (2019), Furness et 
al. (2013), Kelsey et al. (2018) and, Robinson Willmott et al. (2013). When we could not find information 
from these sources, we conducted a literature review to extract the necessary information. If no 
information was available to estimate a metric value for a given species, we used data from similar species. 



119 
 

Finally, when several sources disagreed, we used the most recent values. Information about parameter 
values and sources of information can be found in “AVISTEP_Egypt_Offshore.xlsx” in the of the 
Supplementary Material. 

Two different sensitivity indices were created:  

Where there are three primary factors: A1 = % of time flying at blade height, A2 = % of time spent flying, and 
CnS = conservation status, and three aggravation factors: A3 = nocturnal flight activity, A4 = flight 
manoeuvrability, and Su = annual adult survival.  

 

 

 

A detailed explanation of the different metrics employed is as follows:  

Conservation status (CnS) was the same parameter used in the onshore sensitivity assessment. Most 
previous studies have included information about population and conservation status at the national or 
regional level (e.g., Bradbury et al., 2014, Kelsey et al., 2018). The lack of this information for our study area, 
obliged us to employ a simplified version of this score of 1-5 for least concern to critically endangered.  

- 1 = Least Concern (LC)  
- 2= Near threatened (NT)  
- 3= Vulnerable (VU)  
- 4= Endangered (EN)  
- 5 = Critically Endangered (CR)  

Annual Adult Survival (Su): There are various life-history factors than can affect a population’s ability to 
recover from additional moralities or poor breeding success, we use annual adult survival as a metric to 
capture these traits. These values, which have been recently calculated for all bird species (Bird et al., 
2020) are used as an aggravating factor to red list status. As with onshore, annual adult survival is treated 
as an exponential factor to red list status. For offshore, we followed the classification proposed by Critchley 
& Jessopp (2019), specifically for seabirds.  

- 1 = < 0.75  
- 2 = > 0.75 – 0.8  
- 3 = > 0.8 – 0.85  
- 4 = > 0.85 – 0.9  
- 5 = > 0.9  

Collision (Co): Offshore structures are novel obstructions that do not form part of the natural environment 
and pose a threat of collision to seabirds. Collision can occur with the mobile rotor blades of the turbine or 
with the static structure below. Collision risk modelling has been the focus of windfarm sensitivity analysis 
in areas with established offshore wind industries (Furness et al., 2013; Garthe & Hüppop, 2004). Despite 
ongoing research into collision, there is still uncertainty surrounding the drivers and the frequency of 
collision of seabirds. As a result, risk of collision is estimated by scoring various behavioural and 
morphological traits of individual species. 

Percentage of time flying at blade height (A1). This parameter is directly related to the species flight 
height, and it is one of the main factors influencing collision. The height range selected to represent the 
blade height was between 20-150 meters.  

We assigned values from 1 to 5 where:  
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- 1 = 0 – 5%  
- 2 = > 5 – 10%  
- 3 = > 10 – 15%  
- 4 = > 15 – 20%  
- 5 = > 20 – 100%  

Percentage of time spent flying (A2). Percentage of time in flight during a complete day (24h; day and 
night). Robinson Willmott et al. (2013) and Kelsey et al. (2018) did not include this specific parameter, but 
instead they calculated diurnal flight activity and nocturnal flight activity separately. To use these sources, 
we calculated the average of the nocturnal and diurnal flying activity. We assigned values from 1 to 5 where:  

- 1 = 0 – 20%  
- 2 = > 20 – 40%  
- 3 = > 40 – 60%  
- 4 = > 60 – 80%  
- 5 = > 80 – 100%  

Flight Manoeuvrability (FM) & Nocturnal Activity (Noc): Once flying at a dangerous height, there are 
factors that may impact an individual’s ability to avoid possible collision. Based on previous work on 
collision sensitivity factors (Garthe & Hüppop, 2004; Furness et al., 2013; Bradbury et al., 2014; Certain et 
al., 2015), flight manoeuvrability and nocturnal activity were identified as aggravating factors to exposure. 
The application of aggravating factors assumes that, when all other factors are equal, a less manoeuvrable 
species or a species that is very active at night may be more vulnerable to collision than other species. 
When combining factors, how they interact determines how best to include them. As nocturnal activity and 
flight manoeuvrability are considered to aggravate the risk of flying near offshore turbines, we consider 
them as interactive with the exposure risk values for each species. Therefore, this factor is multiplied by 
the risk of exposure to rotor blades. Since we have no evidence that manoeuvrability and nocturnal activity 
interact dependently in relation to collision risk, we are using the average between the two to create an 
aggravated risk score to apply to exposure (Certain et al., 2015). 

Nocturnal flight activity (A3). Percentage of time in flight during night. We assigned values from 1 to 5 
where:  

- 1 = 0 – 20%  
- 2 = > 20 – 40%  
- 3 = > 40 – 60%  
- 4 = > 60 – 80%  
- 5 = > 80 – 100%  

Flight manoeuvrability (A4). Aerial agility of species and hence their potential to micro-avoid collision with 
wind turbines at sea. We assigned values from 1 to 5 where:  

- 1 (very high manoeuvrability) to 5 (very low manoeuvrability)  

Where there are three primary factors: B1 = disturbance by vessels & helicopters, B2 = disturbance by 
structures, and CnS = conservation status, and two aggravation factors: B3 = habitat flexibility, and Su = 
annual adult survival.  

𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑖𝑛𝑑𝑒𝑥

= ((𝐵1 + 𝐵2)/2)(1 − (𝐵3)/(𝐵3) + 0.5) × 𝐶𝑛𝑆(1 − 𝑆𝑢)/(𝑆𝑢 + 0.5) 

Disturbance by vessels & helicopters (B1). This parameter measures the escape response produced by 
vessel and helicopter traffic. 



121 
 

A detailed explanation of the different metrics employed is as follows: 

- From 1 (low disturbance response) to 5 (high disturbance response)  

Some authors do not distinguish between disturbance produced by fixed structures and marine traffic. 
However, since marine traffic (i.e., vessels and helicopters) is expected to increase during construction and 
operation of offshore wind farms, we included them separately. For some species we did not find 
information about both disturbance types, but only for fixed structures; on those occasions, we scored 
both parameters equally.  

Disturbance by structures (B2). Macro-avoidance behaviour from fixed structures on the sea (i.e., 
offshore wind farms) and possible displacement from areas under the influence of these structures.  

- From 1 (low disturbance response) to 5 (high disturbance response)  

Habitat flexibility (B3). Ability of the species to feed on a variety of food sources and/or forage within 
multiple habitat types, or if, on the contrary, the species is restricted in their diet and/or forages in very 
particular habitats.  

- From 1 (high habitat flexibility) to 5 (low habitat flexibility)  

To standardise all metrics and make them comparable, we divided each on them by the maximum category 
value following recommendations from Certain et al. (2015).  

 

Mapping distribution for all seabird species– STEP 4 
Species distribution  
For species geographical distributions, we used distribution range maps (BirdLife International & The 
Handbook of the Birds of the World, 2019). Some species did not have the marine part of their range 
included in the range map within the study area. For these species, we searched the literature for the 
offshore foraging range for the species and used this to buffer from the terrestrial part of the species range. 
Range maps for all species were rasterised at a 5x5 km grid for breeding and non-breeding/passage ranges 
separately, included resident species in both the breeding and non-breeding maps. 

Sensitivity map calculation  
Following the same methodology we used for onshore wind energy, we first transferred the sensitivity 
indices values per species to their geographic distribution, making this value spatially explicit in a ~ 5x5 km 
grid cell. We then overlapped all the species geographic distributions by season and added the sensitivity 
values from all the species. Thus, the final score for each cell was the result of the summed values of all 
the species present in that cell. We did this separately for the breeding and non-breeding seasons for both 
collision and displacement sensitivity index; thus, four different maps were created, two for collision and 
two for displacement. To make these maps comparable with the rest of sources of information, we divided 
the values by the maximum so that the highest values from each map was 1. We then overlapped the four 
maps so that the final score of each cell was the maximum value. In this way, we ensured that the final 
sensitivity score for an area was calculated based on the most sensitive species present, regardless of the 
type of impact.  

 

Mapping distribution for non-marine species– STEP 5 
Terrestrial Bird Migration 
Egypt supports a crucial bottle neck for terrestrial bird species migrating within the African-Eurasian flyway, 
many of which make sea crossings to reduce their distance travels over their long migrations. To account 
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for this, we used the marine part of the terrestrial bird migration layer created using kernel density analysis 
to map satellite tracking data for 14 species as described in the previous section on onshore wind.  

This layer was then combined with the species sensitivity layer by overlapping the rasters and selecting the 
maximum value from any given cell. The output map contained either the highest sensitivity from the 
seabird sensitivity map or migratory map in any given cell 

 

Additional Areas 

Important Bird and Biodiversity Areas (IBAs)  
Important Bird and Biodiversity Areas (IBAs) are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. They cover about 6.7% of terrestrial area, 1.6% of marine area and 3.1% 
of the total surface area of the Earth (Donald et al., 2019). This dataset is curated by BirdLife International 
and available through their website (http://datazone.birdlife.org/site). All countries included the most up-
to-date version of this data from 2024 (Birdlife International, 2024). We included all IBAs catalogued as 
marine by BirdLife International plus those coastal IBAs which had ≥5% overlap with the oceans following 
the classification applied in the Sustainable Development Goals (Goal 14.5 - Indicator 14.5.1) (United 
Nations Environment Programme, 2021). Cells overlapping with a marine or coastal IBA received the 
maximum level of sensitivity. A buffer of ~5 km was applied at value of 0.5 to all IBA polygons with breeding 
seabirds as trigger species to account for foraging movements out of the IBA boundaries. For Egypt, these 
sites were: Lake Burullus, Lake Manzala, Lake Bardawil, Zaranik Protected Area, Hurghada archipelago, 
Tiran island, Qulan islands, Zabargad island, Siyal islands, Rawabel islands and Wadi Gimal island. 

 

Categorising Sensitivity– STEP 6  
Once the preliminary species sensitivity result layer was produced, we categorised the results our 
categories of low-high sensitivity. This was a classed raster with all cells values from 1 to 4 (green to red). 
This was done using Jenks natural breaks in the ClassInt package in R (Bivand et al., 2022).  

 

Adding Other Important Areas for Birds and Conservation– STEP 7 
As with onshore, areas that were determined to be key concern for bird conservation were included in our 
analysis for offshore wind. Shapefiles of selected areas were overlapped with the project fishnet and 
overlapping cells were rasterised to match the 5x5 km project grid. For Egypt these areas included oceanic 
habitats, Marine Protected Areas (MPAs) and Important Bird and Biodiversity Areas (IBAs) These areas were 
added at the highest sensitivity. As these were added after the classification of sensitivity using Jenks 
natural breaks, they did not impact on the relative sensitivity of nearby cells. 

Ocean habitats  
The analysis also contains information on the distribution of marine habitats that are of special importance 
for marine organisms and ecosystems. Overlapping cells with any of these habitats were given the 
maximum sensitivity value. For Egypt, three habitat types were considered.  

- Mangroves. This dataset was created mostly from satellite imagery and shows the global distribution of 
mangroves. It was produced as a joint initiative of several international organizations (Spalding et al., 2010).  

- Coral reefs. This dataset shows the global distribution of coral reefs in tropical and subtropical regions. It 
is the most comprehensive global dataset of warm-water coral reefs to date UNEP-WCMC, WorldFish 
Centre, WRI, & TNC (2021).  

http://datazone.birdlife.org/site
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- Seagrasses. This global dataset of seagrass distribution was created from multiple sources (in 128 
countries and territories), including maps (of varying scales), expert interpolation and point-based samples 
(UNEP-WCMC and FT Short, 2021).  

This information is curated by UNEP-WCMC and available through the Ocean Data Viewer on their website 
(https://data.unep-wcmc.org/).  

Overlapping cells with any of these three habitats were given the maximum sensitivity value.  

Marine Protected Areas  
Marine protected areas are sites designated for the conservation of marine habitats, species and 
ecosystems. Egypt has just over 5% of its marine environment designated as MPAs 
(www.protectedplanet.net). These were included in our offshore sensitivity analysis at the highest level of 
sensitivity. We used the World Database of Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated regularly by governments and curated by UNEP-
WCMC and includes the most up-to-date information on protected areas. The latest version from 2024 was 
used for Egypt. All protected areas classified as coastal or marine were included, regardless of their IUCN 
management category. Cells overlapping with these areas automatically received the maximum level of 
sensitivity.  

  

https://data.unep-wcmc.org/
https://www.protectedplanet.net/
https://www.protectedplanet.net/
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Onshore Wind Energy 

Calculating species sensitivity – STEP 1 
In creating a species sensitivity index, we adapted the sensitivity index developed by Certain et al. (2015) 
which main innovation has been to differentiate between primary and aggravation factors. Read Certain et 
al. (2015) and Garthe & Hüppop (2004) for more details on parameter combinations. For the taxonomy we 
followed the HBW-BirdLife v.9 (https://datazone.birdlife.org/about-our-science/taxonomy). 

The respective national species lists to be assessed were created in agreement with BirdLife Australia, and 
other bird experts. The sensitivity index was calculated for each regularly occurring bird species, excluding 
flightless, vagrant, and rare sightings, as well as restricted seabirds. For Australia, we calculated the 
sensitivity index for 607 bird species following the formula: 

 

 

Collision (Co): We employed a trait-based approach to infer the potential collision risk at the species level, 
thereby developing a metric that identifies a species' sensitivity to collisions with turbines. Factors 
influencing a species' collision vulnerability to onshore wind farms are related to intrinsic factors, such as 
ecological, behavioural, morphological, and life-history aspects, as well as the bird's level of exposure to 
turbines when in flight. Therefore, we primarily focused on two concepts: bird exposure and bird 
susceptibility, which, when combined, lead to the risk of collision. We also considered adding an extra risk 
factor to account for aspects that increase the risk of collision but are unique to some species and, 
therefore, not applicable to all species. 

𝑪𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = (𝐸𝑥𝑝 × 𝑆𝑢𝑠𝑐𝑒𝑝) + 𝐸𝑥𝑡. 𝑟𝑖𝑠𝑘 

 

Bird exposure (Exp) refers to the probability of a bird encountering a turbine, based on the time they fly at 
heights compatible with the rotor sweep zone. We classified each species in four different exposure 
categories: 

• No exposure: Species that are never or very rarely active at a vulnerable height, representing 
flightless, terrestrial, and ground-dwelling birds. Birds that rarely fly at height, in open landscapes 
away from forest vegetation, such as forest dwellers and species that stay close to the ground, 
were also classified in this category. 

• Low exposure: Species that are not active daily at a vulnerable height but spend some time at the 
RSZ during their annual cycle are often represented by migratory and dispersive species, such as 
migratory honeyeaters and altitudinal migrants. 

• Moderate exposure: Species that spend less than 50% of their daily active time at a vulnerable 
height, represented by species that make daily movements across open air space as they 
commute between roosting and foraging sites. This category typically includes many members of 
the following families: corvids, parrots, pigeons and doves, waterfowl, gulls and terns, shorebirds, 
pelicans, cormorants, bustards, cranes, herons, ibis, magpies, and birds of prey that hunt from a 
perch or within forests. 

• High exposure: Species that spend more than 50% of their daily active time at a vulnerable height, 
represented by aerial insectivores such as swifts and swallows, and birds of prey that hunt on the 
wing, often from a high soar. 

Since a bird can collide only when it is exposed to the turbines, we work with this set of weights: No 
exposure (zero); Low (0.333); Moderate (0.666); High (1). 

Bird susceptibility (Suscep) refers to the species’ intrinsic characters, which are mainly related to the 
morpho-behavioural and life-history traits linked with flight behaviour. Theoretically, large, heavy, relatively 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝐶𝑜 + (
𝐷𝑖

5
)) × (𝐶𝑛𝑆)(1−(𝑆𝑢) ((𝑆𝑢)+0.5)⁄ ) 

https://datazone.birdlife.org/about-our-science/taxonomy
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small-winged birds with poor vision are most susceptible to collision, while small, light, relatively large-
winged birds with acute vision are least susceptible. All volant, terrestrial species are potentially 
susceptible, and most fall between these extremes. 

𝑩𝒊𝒓𝒅 𝑺𝒖𝒄𝒆𝒑𝒕𝒊𝒃𝒊𝒍𝒊𝒕𝒚 = (𝑭𝒐𝒓𝒂𝒈. 𝒃𝒆𝒉𝒂𝒗 × 𝑴𝒏𝒗𝒓) 

 

Foraging behaviour (Forag.behav): Variations in visual field topography among birds have been 
interpreted as adaptations to the specific perceptual challenges posed by the species’ foraging ecology. At 
the same time, visual perception, when combined with specific foraging behaviours during flight, can affect 
the likelihood of bird collision with different human infrastructures. 

Visual topography differs between species, particularly in the extent and position of the binocular field 
relative to the bill, as well as the extent of blind areas above and behind the head. These differences are 
primarily correlated with differences in foraging ecology, even among closely related species (Martin & 
Portugal 2011). Birds differ in the vertical extent of their binocular fields, resulting in differences in the 
extent of the blind areas in front of the head, a key region for detecting obstacles in flight. These differences 
must arise primarily due to differences in the positioning of the eyes in the skull. Overall, bird species with 
more comprehensive coverage of the frontal hemisphere gain full visual coverage of the airspace ahead of 
them, regardless of the head position adopted in flight. This is likely to contribute to lower vulnerability to 
collisions. We are interested in the phylogenetic signal for the maximum vertical height of the binocular 
field and foraging ecology based on the family level. Therefore, we classified birds into four different types 
of risk of collision according to eye position in the skull, vertical extension of the binocular visual field, 
foraging behaviour, head position during flying, and diet: 

• Low risk: Birds with frontal eye position, excellent binocular view, and large vertical extension of 
the binocular field. They have forward-facing vision, which means that during flight, they forage 
looking forward, not looking down, catching prey in mid-air (e.g., some insectivorous birds). 

• Medium risk: Inside medium risk, we can identify two groups: a) Birds with lateral eye position and 
those with limited forward vision. Full celestial/hemisphere view is in monocular, with almost no 
blind areas (associated with anti-predator vigilance). Looking for foraging spots when flying. 
Foraging looking forward, not looking down while flying, represented mainly by tactile/filter 
foragers. b) Lateral eye position, forward vision limited. Benefit from monocular vision. But have a 
large vertical extension of the binocular field (small blind area). Looking for foraging spots when 
flying. Foraging looking forward, not looking down, represented mainly by Pecking foragers, using 
the bill like pincers (catching seeds or evasive prey). 

• High risk: More frontal eye position, Excellent binocular vision, but limited vertical extension of 
the binocular field resulting in extensive blind areas. Forward-facing vision, but forages looking 
down. Overall, carrion eaters and birds of prey. 

• Very high: They also benefit from lateral vision. Very limited vertical extension of the binocular field 
(even a slight 30-degree head turn can send them flying forward blindly), forward-facing vision 
often looking down. Overall, a diet based on a range of stationary sources such as seeds, berries, 
bulbs, and non-evasive animals. 

Manoeuvrability (Mnvr). The scientific literature highlights that wing loading (resulting from body mass 
divided by wing area) is one of the most relevant morphological traits that predicts species' probability of 
colliding and is associated with high manoeuvrability in flight (Bevanger, 1998; Janss, 2000). However, 
measures such as wing area or specific measurements necessary to calculate wing area, such as 
wingspan, are not always available. We demonstrated that wing length is highly correlated with wingspan. 
When bird weight is divided by the wing length, it produces a proxy valid to infer manoeuvrability (D’Amico 
et al., 2019; Reid et al., 2023) that could conserve the same relative difference between species as using 
wing area. Both weight and wing length are commonly recorded measurements and are available for all 
birds worldwide in Tobias et al. (2022). Therefore, we have: 
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𝑴𝒏𝒗𝒓_𝒑𝒓𝒐𝒙𝒚 = (
𝒘𝒆𝒊𝒈𝒉𝒕 (𝒈)

𝒘𝒊𝒏𝒈  𝒍𝒆𝒏𝒈𝒕𝒉 (𝒄𝒎)
) 

 

Extra risk factor (Ext.risk): Some species possess additional or aggravating risk factors for collisions that 
cannot be generalised across all species. For example, even a bird with great manoeuvrability and 
adequate vision can be frequently involved in collisions. In those cases, other intrinsic traits, such as very 
high flight speeds, or flock-oriented flight patterns, may play a role, especially when combined with low-
light conditions typical of crepuscular or nocturnal activity. However, these traits alone do not universally 
predict collision risk: not all fast-flying, flocking, or nocturnal species are equally affected. For example, 
some nocturnal birds have specialised night vision and can evade manoeuvres even in the dark. Therefore, 
when we could identify a special trait, we gave some species with at least one of these potential special 
traits an additional weight = 0,2 as an extra risk factor. Additionally, we assigned an extra weight of 1 to 
species frequently recorded as victims of turbine and/or overhead cable collisions worldwide. An extra 
weight of 1 was also given to a few Australian species that faced threats from energy infrastructure in their 
National Recovery Plan (See “AVISTEP_Australia_Onshore.xlsx” in Sup. Material to check species that 
received the Extra risk factor). 

*It's important to recognise that any flying species may eventually collide. In addition to intrinsic species 
characteristics, collisions can occur due to other external environmental and technical factors, and the 
frequency of recordings may be attributed to population abundance. Therefore, a species that is not prone 
to collisions, flying in extreme weather conditions such as wind and low light availability, combined with a 
lack of mitigation, may also collide. Our approach aims to capture collision risk based only on intrinsic 
aspects of the species. 

Displacement (Di): Displacement refers to the reduction in habitat use within areas influenced by wind 
energy facilities, which can result in decreased bird densities and, consequently, functional habitat loss 
over the medium and long term (May, 2015). Although research on displacement is relatively recent 
compared to studies addressing collision risk, the concept was first applied and explored in marine 
environments. These habitats are physically more homogeneous than terrestrial ones, which allows for 
clearer and more conclusive findings in offshore contexts. In contrast, for onshore bird species, 
demonstrating that observed alterations in habitat use are directly attributable to the presence of wind 
farms is considerably more complex. While reduced habitat use is also relevant in terrestrial contexts, the 
available evidence is limited and less conclusive. Consequently, within our analytical framework, 
displacement was assigned a lower relative importance, weighted at one-fifth of the value of other 
parameters. 

A literature review was conducted using the Web of Science database to identify studies addressing bird 
displacement in the context of wind energy. The search query employed was as follows:  
(TS = ("wind*farm" OR "onshore" OR "offshore" OR "wind*turbine") AND TS = ("birds" OR "avian")) AND TS = 
("displacement" OR "avoidance" OR "space*use"). TS means title, abstract, and author keywords. 

The displacement parameter was incorporated only for bird families with studies presenting consistent 
evidence of displacement effects. For these families in Australia—Accipitridae, Anatidae, Falconidae, 
Gruidae, and Podicipedidae—the maximum displacement value of 1 was assigned. For families exhibiting 
contradictory findings—Strigidae, Laridae, Scolopacidae, and Charadriidae—an intermediate value of 0.5 
was used. The parameter was not included in the analytical formula for most bird families, where 
displacement has not been explicitly investigated. 

Conservation Status (CnS) was assigned to each species by integrating information from both the Global 
Red List (GRL) and the National Red List (NRL). Species were then classified according to their 
Conservation Status and Population Trend (if population are increasing, stable or decreasing in numbers). 
To determine the relative importance among different categories, we used the Analytic Hierarchy Process 
(AHP), applying a Saaty pairwise comparison matrix across categories to evaluate and contrast their 
relevance to extinction risk. The assessment was conducted in collaboration with colleagues from the 
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IUCN Red List. The weights assigned increased exponentially according to the highest threat category as 
follows: 

• Critically Endangered (CR) + any species with number of mature individuals < 1,000 = 1.00 
• Endangered (EN) + any species with number of mature individuals < 2,500 = 0.59 
• Vulnerable (VU) + any species with number of mature individuals < 10,000 = 0.41 
• Near Threatened (NT) = 0.12 
• Least Concerned (LC) and population trend decreasing = 0.08 
• LC and population trend increasing or stable = 0.06 

We did not have data-deficient (DD) species. The same values were considered for the Global and National 
Red List categories. Then, the mean value was used as the final CnS, since the categories may differ 
between global and national assessments. 

𝑪𝒏𝑺 = (
𝑮𝑹𝑳 + 𝑵𝑹𝑳

𝟐
) 

  

Annual adult survival (Su). The population-level impact of a single individual fatality event depends 
primarily on the species' life history traits. Specific life history traits, such as fecundity, age of maturity, and 
adult survival, are particularly relevant. K-selected species are characterised by low fecundity, late ages of 
maturity and high survival; thus, adult mortality impacts these populations (Niel & Lebreton, 2005; Sæther 
& Bakke, 2000). The species groups with the highest rates of impact from wind development tend to be K-
selected species, such as Accipitridae, Ciconiidae, or Bucerotidae (Thaxter et al., 2017); thus, this factor 
must be carefully considered when evaluating impacts on bird conservation. We employed annual adult 
survival estimated for all bird species to include a metric that could capture these life history factors (Bird 
et al., 2020). For Australian birds, the adult annual survival ranged from 0.41 to 0.93. 

 

To combine the five parameters above in the formula and balance their contributions to the sensitivity 
index, we rescaled all values from 0.01 to 1, following the recommendations of Certain et al. (2015).  

We ranked all species according to their sensitivity values to identify the priority species for spatial 
assessment. To identify the subset most affected, we split the ranking into different classes using a cluster 
method proposed by Jiang (2013) for data with heavy-tailed distributions. The method partitions the class 
intervals and establishes the number of groups through an iterative approach. This approach resulted in 
five groups, which we interpreted as extremely high, very high, high, medium, and low sensitivity. To be 
more conservative, we considered the species in all categories different from low sensitivity as priority 
species, totalling 145 Australian birds (See “AVISTEP_Australia_Onshore.xlsx” in Sup. Material). 

 

Mapping the distribution area for priority species – STEP 2 
We used a version of the area of habitat (AOH) maps that were explicitly created for Australian terrestrial 
birds (the data are currently under review and are available upon request). The AOH maps represent the 
utilised habitats within a species’ range and can be considered an intermediate step between the Extent of 
Occurrence (EOO) and Area of Occupancy (AOO). These maps were created with a 100x100m grid cell 
resolution using a modelling approach based on the Australian National Vegetation Information System 
(NVIS v.6). The NVIS classes were translated to species’ habitat preferences according to Garnet et al. 
(2015) inside species distribution maps combining BirdLife International & Australian Bird Guide ranges. 
The AOH maps were created using binary information representing presence and absence, and were based 
only on breeding, non-breeding, and resident distribution. 

A raster layer for each species was produced, representing the species occurrence probability described 
by the proportion of area of suitable habitat in each grid cell. More specifically, since our assessment was 

https://digital.atlas.gov.au/maps/digitalatlas::national-vegetation-information-system-nvis-version-6-0-extant-vegetation/about?path=
https://digital.atlas.gov.au/maps/digitalatlas::national-vegetation-information-system-nvis-version-6-0-extant-vegetation/about?path=
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in a 5x5 km grid cell resolution, we transformed the original AOH maps to our resolution, calculating the 
total percentage of AOH present in each cell. We also used occurrence points from the last 15 years (2010 
to 2025) from different sources to refine the likelihood of occurring in each grid cell for each species: 1) 
eBIRD data (https://ebird.org). To guarantee the accuracy of the data, we only included observations that 
came from eBIRD’s protocol, whether stationary or travelling. The maximum distance travelled was set to 
7 km to ensure that all records were contained within the final ~ 5x5 km cells. To curate the datasets, we 
used the RStudio package auk (Strimas-Mackey et al., 2025); 2) Birdata is BirdLife Australia’s online 
national bird monitoring platform, which compiles data from professional researchers’ projects and citizen 
scientists. It also incorporates BirdLife Australia’s nationwide surveys and targeted threatened species 
surveys; we included all data except eBird to avoid duplicate data. To guarantee the accuracy of the data, 
we only included observations that came from eBIRD’s protocol, whether stationary or travelling. The 
maximum distance travelled was set to 7 km to ensure that all records were contained within the final ~ 
5x5 km cells. To curate the datasets, we used the RStudio package auk (Strimas-Mackey et al., 2025), and 
3) Tasmania Data - Bird occurrences from Natural Values Atlas, which provides comprehensive information 
on Tasmania's birds. Since the occurrence data are not evenly observed and distributed over the Australian 
territory, we assume the species has a very high probability of occurring in a grid cell if it has at least one 
occurrence of evidence spatially overlapping it. In these cases, we upgraded the cell value to the maximum 
value (=1), regardless of the amount of habitat available in the AOH surface.  

The bird ranges provided by the BLA contained separate polygons for the species’ core area - primary 
habitats that are essential for a bird species’ survival, reproduction, and long-term persistence - and non-
core areas - secondary or peripheral habitats that birds use less frequently, seasonally, or 
opportunistically. Thus, the amount of habitat for non-core areas was evaluated as less (divided by 2) than 
in the species' core areas. 

We adapted the formula by Bradbury et al. (2014) to weight the raster for each species by its respective 
sensitivity index and the amount of habitat in each grid cell. The final species sensitivity value (SI) was 
assigned for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑟𝑒 = 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 + 1) ∗ 𝑆𝐼 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑛𝑜𝑛_𝑐𝑜𝑟𝑒 = 𝑙𝑛((𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 + 1)/2) ∗ 𝑆𝐼 

 

Species occurrence certainty  
• Very-high occurrence certainty (4): Inside core areas, the percentage of habitat suitable for the 

species (%AOH) and the occurrence confirmed by on-the-ground surveys. 
• High occurrence certainty (3): Inside core areas, the percentage of habitat suitable to find the 

species is > 50% (AOH) without occurrence confirmed by on-the-ground surveys; and outside core 
areas, the percentage of habitat suitable for the species (%AOH) and the occurrence confirmed by 
on-the-ground surveys. 

• Medium occurrence certainty (2): Inside core areas, the percentage of habitat suitable to find the 
species is < 50% (AOH) without occurrence confirmed by on-the-ground surveys; and outside core 
areas, the percentage of habitat suitable to find the species is > 50% (AOH) without occurrence 
confirmed by on-the-ground surveys. 

• Low occurrence certainty (1): Outside core areas, the percentage of habitat suitable to find the 
species is < 50% (AOH), and there is no occurrence confirmed by on-the-ground surveys. 

This information is available on the AVISTEP maps, which show all priority species in each grid cell with 
their respective SI and Occurrence Certainty. Some species in Australia are being considered sensitive. 
Therefore, publication or information on species distribution patterns could put those sites at risk and is 
not recommended. Nine species in Australia (Australasian Bittern, Red Goshawk, Grey Falcon, Orange-
bellied Parrot, Plains-wanderer, Night Parrot, Princess Parrot, Golden-shouldered Parrot, and Letter-

https://ebird.org/
https://birdata.birdlife.org.au/about-birdata
https://www.naturalvaluesatlas.tas.gov.au/
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winged Kite) had their sensitivity index and sites considered in the analysis; however, the display showing 
occurrence certainty was omitted. 

 

Creating a multispecies combination map – STEP 3 
We created a multispecies combination map by summing the sensitivity maps for all species. For onshore 
wind in Australia, we combined rasters for 145 priority species. Thus, the final score for each grid cell 
results from the summed values of all the species present in that cell. The bird sensitivity map captures the 
cumulative impact over the range of species present in each area. The final cumulative sensitivity map was 
rescaled in values between 0 and 1(Figure 1). 

∑ 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

 

Figure 1. The cumulative sensitivity raster combining the sensitivity layers for 145 priority species facing impacts from 
the wind farm onshore. Values rescaled between zero and 1. 

 

Adding other important areas for birds and conservation – STEP 4 
To mitigate the impact of renewable energy, it is crucial to focus development away from natural habitats 
and important areas for biodiversity and towards areas with low ecological value, such as those already 
heavily modified by human activity (Kiesecker et al., 2019). For this purpose, in addition to the priority 
species cumulative surface, we also integrated various spatial information regarding areas relevant to bird 
and biodiversity conservation, which were integrated using Multicriteria Analysis – MCA (Esmail & 
Geneletti, 2018). First, for Australia, we worked on different levels to map bird sensitivity, where each letter 
A, B, C, D and E refers to a specific step in Figure 4. 
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A) Due to a combination of geological, climatic, and evolutionary factors, Australia hosts high rates of 
endemism at species and higher taxonomic levels up to that of families, especially among the passerines 
(Garnett et al., 2015). Although many of these subspecies may not be directly affected by impacts from 
energy infrastructures, they are very rare and have a restricted distribution. Therefore, they warrant priority 
in conservation efforts and spatial planning to avoid their distribution areas. To account for these 
subspecies, we developed a spatial layer representing the “Richness of Threatened Subspecies”, based on 
polygons delineating the distribution areas of 84 subspecies classified under the threat categories Near 
Threatened (NT), Vulnerable (VU), Endangered (EN), and Critically Endangered (CR). To produce a Final 
Species Sensitivity (A), this layer was combined with the priority species cumulative map, but with less 
weight (contributing with only 20%) since the polygons are less accurate regarding the probability of finding 
the species when compared to the information used to prepare the cumulative map of priority species 
(contributing with 80%). All the maps were rescaled into 0 and 1. 

𝐹𝑖𝑛𝑎𝑙 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑒𝑛𝑠𝑖. 𝑜𝑓 𝑃𝑆 × 0.8) + (𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠 𝑜𝑓 𝑇ℎ𝑟𝑒𝑎𝑡𝑛𝑒𝑑 𝑠𝑢𝑏𝑠𝑝 × 0.2) 

 

B) Although less studied and predictable than some migratory routes in other continents (e.g La Sorte et 
al., 2016; Gauld et al., 2022), understanding Australian landbird movement is critically essential to ensure 
that sensitivity maps accurately represent crucial stopover wetlands and do not misrepresent aerial 
connectivity between breeding and feeding grounds. 

For onshore, we developed a layer to represent the movement of landbirds over Australian lands (Australia 
mainland and Tasmania), combining two main approaches: 

Delineating Waterbird Polygons based on Bird Tracking Data 
Raw animal tracking data for migratory birds were collected from published studies, author-provided 
datasets, and Movebank (www.movebank.org). After assessing the Movebank data, we included only GPS 
and PTT fixes with timestamps for three species (Bar-tailed Godwit, Grey Teal, and Bar-tailed Godwit), 
covering 21 individuals. To reduce temporal autocorrelation and ensure uniform temporal sampling among 
individuals, we interpolated each track to a regular time interval specific to each species (typically 10 – 30 
minutes) using linear interpolation in time. Short-duration tracks (< 1 hour) or trips with fewer than five valid 
fixes were excluded. Data from stationary periods associated with capture, breeding or local roosting were 
also removed to focus on migratory or passage movements. 

Following interpolation, each individual’s track was segmented into discrete movement trips using buffers 
of 3 km (departure) and 10 km (return) around a pseudo-colony centroid. This delineation enabled the 
identification of outbound and inbound flights within the broader context of migratory movements. Trips 
were projected onto a national 5 km equal-area grid, which formed the basis for subsequent kernel density 
estimation (KDE) and synthesis analyses. 

All pre-processed data were visually inspected for trajectory continuity, geographic plausibility, and 
temporal regularity before being included in species-level modelling. The resulting dataset represented 
standardised, quality-controlled movement records suitable for estimating species flyways and 
composite sensitivity indices across Australia. 

We also included the final polygons produced by McGiness et al. (2024a) and McGiness et al. (2024b), 
which cover the Royal Spoonbill and Straw-necked Ibis, delineated using tracking data. For more details, 
please refer to McGiness et al. (2024a) and McGiness et al. (2024b). 

The five individual species rasters were weighted according to the previous set of conservation status 
values. 

Approximate migration corridor based on range maps - passage area 
Given the limited number of species telemetry data available, species distribution polygons were compiled 
from the IUCN Red List database, with a focus on passage range classifications (BirdLife International & 

http://www.movebank.org/
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Handbook of the Birds of the World, 2024). Polygons were dissolved into a single multipart geometry per 
species. In total, only nine species had a passage area delineated over Australia (Calidris ferruginea, 
Calidris pugnax, Chalcites lucidus, Coracina novaehollandiae, Egretta picata, Gallinago hardwickii, 
Hirundapus caudacutus, Neophema chrysogaster, Sterna paradisaea). To match the extent of movement 
analyses, all polygons were clipped to the Australian region of interest (ROI). Each species’ polygon was 
rasterised to the 5 km grid, producing binary presence rasters that represented passage areas. The nine 
individual species rasters were weighted according to the previous set of conservation status values. The 
range rasters were combined into a multi-species stack (summed). The final output was normalised 
presence rasters (score 0 - 1), representing a range-based proxy for migratory flyway use across the 
Australian region. 

Both the Waterbird Polygons and Migratory Corridor maps were rescaled into 0 and 1 and combined with 
the same weight – 50% of the contribution each, since a similar number of species were represented in 
each map, according to the formula: 

𝐹𝑖𝑛𝑎𝑙 𝐵𝑖𝑟𝑑 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = (𝑊𝑎𝑡𝑒𝑟𝑏𝑖𝑟𝑑 𝑃𝑜𝑙𝑦𝑔𝑜𝑛𝑠 × 0.5)  + (𝑀𝑖𝑔𝑟𝑎𝑡𝑜𝑟𝑦 𝐶𝑜𝑟𝑟𝑖𝑑𝑜𝑟 × 0.5) 

 

C) To compose a unique Bird Sensitivity map, we combined the Final Species Sensitivity map with the Final 
Bird Movement map. The Final Species Sensitivity contribution more (90%) over the Final Bird Movement 
because the first map considers many more species and subspecies: 

𝐵𝑖𝑟𝑑 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (𝐹𝑖𝑛𝑎𝑙 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 × 0.9) +  (𝐹𝑖𝑛𝑎𝑙 𝐵𝑖𝑟𝑑 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡 × 0.1) 

 

D) To identify habitats most relevant for bird conservation, we used data from the National Vegetation 
Information System (NVIS) Version 7.0, which provides delineations of 32 major Vegetation Groups 
representing native vegetation classes across Australia at a 100 m resolution. We developed a bird richness 
map based on 607 Australian bird species, weighting each species according to its global Conservation 
Status as follows: Critically Endangered (CR) + any species with number of mature individuals < 1,000 = 
1.00; Endangered (EN) + any species with number of mature individuals < 2,500 = 0.59; Vulnerable (VU) + 
any species with number of mature individuals < 10,000 = 0.41; Near Threatened (NT) = 0.12; Least 
Concerned (LC) and population trend decreasing = 0.08; LC and population trend increasing/stable = 0.06. 
For each grid cell, the cumulative value of bird richness & conservation status was calculated, and the final 
values were rescaled to a range of zero to one. 

Vegetation classes were ordinated using Principal Component Analysis (PCA), considering the proportion 
of each vegetation class in Australia, the median bird richness and conservation status, and the maximum 
richness value within each class. Bartlett’s test of sphericity (Bartlett, 1951) was applied to evaluate the 
suitability of the data for factor analysis. Composite scores were obtained by multiplying the factors 
derived from the first ordination axis by that axis’s shared variance. Based on these results, eleven 
vegetation classes were identified as being important for bird conservation: 1)Eucalypt Open Forests, 
2)Eucalypt Tall Open Forests, 3)Eucalypt Woodlands, 4)Rainforests and Vine Thickets, 5)Casuarina Forests 
and Woodlands, 6)Mangroves, 7)Tussock Grasslands, 8)Callitris Forests and Woodlands, 9)Eucalypt Low 
Open Forests, 10)Heathlands, and 11)Inland Aquatic - freshwater, salt lakes, lagoons (Figure 2). To support 
this assessment, we also referred to the EPBC Act List of Threatened Ecological Communities and the 
Australian National Botanic Gardens – Centre for Australian National Biodiversity Research. 

The NVIS map was subsequently reclassified by assigning a value of 1 to the 11 vegetation classes selected 
and a value of 0 to all others. The percentage of important vegetation within each 5x5 km cell was then 
calculated following the same procedure as in STEP 2. Consequently, cells with a higher proportion of 
important vegetation received higher sensitivity scores. 
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Figure 2. Eleven classes selected to represent the rarest vegetation in Australia in accordance with PCA rank analysis, 
EPBC Act List of Threatened Ecological Communities and the Australian National Botanic Gardens – Centre for 
Australian National Biodiversity Research. 

 

To complement the habitat assessment, in addition to creating the Rare vegetation & high bird conservation 
map, we also included the Protected Areas database from Collaborative Australian Protected Areas 
Database (CAPAD 2024). This database provides spatial information on Australia’s protected areas at 
national, state, and territory levels, including IUCN categories (i.e., categories Ia to VI), which classify 
protected areas according to their management objectives (Dudley, 2008). 

First, all protected areas (PAs) that were designated specifically for bird conservation or that represent 
essential habitats for particular bird species were identified. This resulted in a set of 5,605 PAs, which were 
extracted and carried forward to the next step (see STEP 5). From the remaining PAs, different weights were 
assigned according to the IUCN management categories. PAs classified as Ia (Strict Nature Reserve), Ib 
(Wilderness Area), II (National Park), III (Natural Monument or Feature), and IV (Habitat/Species 
Management Area) were given the highest weight of 1.0. In contrast, PAs under categories V (Protected 
Landscape or Seascape) and VI (Protected Area with Sustainable Use of Natural Resources) were 
considered lower priorities for bird conservation, as they allow a broader range of human activities. These 
were assigned a weight of 0.4. The set of weights was determined using the Analytic Hierarchy Process 
(AHP). 

D)All the above information was rasterised at a resolution of 5 km². The final habitat sensitivity map was 
created by combining the Rare Vegetation & High Bird Conservation Value map with the IUCN-triggered PA 
map (Figure 3), both given the same weight in the MCA combination according to the equation: 

F𝑖𝑛𝑎𝑙 𝐻𝑎𝑏𝑖𝑡𝑎𝑡 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = (𝑅𝑎𝑟𝑒 𝑣𝑒𝑔. &ℎ𝑖𝑔ℎ 𝑏𝑖𝑟𝑑 𝑐𝑜𝑛𝑠. 𝑣𝑎𝑙𝑢𝑒 × 0.5) +  (𝑃𝐴𝑠𝐼𝑈𝐶𝑁𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 × 0.5) 
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Figure 3. Final Habitat Sensitivity map created from the combination of the Rare Vegetation & High Bird Conservation 
with the Protected Areas triggered by IUCN classification. 

 

Due to the relevance for bird and conservation, the Final Habitat Sensitivity and Bird Sensitivity maps were 
combined, preserving the maximum value of each grid cell as follows: 

𝐹𝑖𝑛𝑎𝑙 𝐵𝑖𝑟𝑑 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑥, 𝑦) = max (𝐶(𝑥, 𝑦), 𝐷(𝑥, 𝑦)) 

 

After generating the Final Bird Sensitivity Map, the final step involved reducing the overall contribution of 
human-induced areas, as this specific land-use information is not represented in the main vegetation map. 
To address this, we incorporated data from the Catchment Scale Land Use of Australia (CLUM), version 2 
(ABARES 2024), which provides a national compilation of catchment-scale land-use data for Australia. 
CLUM is a seamless raster dataset that integrates land-use information from all state and territory 
jurisdictions, compiled at a spatial resolution of 50x50 m. 

The following land-use classes were selected for adjustment: Intensive horticulture, Intensive animal 
production, Manufacturing and industrial, Services, Utilities, Transport and communication, Mining, and 
portions of Plantation forest, Irrigated plantation, and Residential areas. These classes were resampled to 
match our 5x5 km grid, and a maximum value of 0.5 was subtracted from the Final Bird Sensitivity Map to 
reflect their reduced suitability for bird conservation. 
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Figure 4. Overall workflow showing the main spatial layers integrated to create the final map displayed on AVISTEP. The 
same workflow was used for Powerline - High Voltage and Low-Medium Voltage. For these infrastructures, the only 
difference is the Cumulative Sensitivity map (a), which reflects the respective priority species for each development 
and impact. 

 

Identifying final sensitivity categories – STEP 5 
Classifying the sensitivity value into categories 
Our sensitivity data over grid cells display non‐uniform distributions with evident clustering data. Thus, we 
have used Jenks’ Natural Breaks algorithm (Natural breaks function, ArcGIS Pro, ESRI 2021) to classify 
sensitivity values across grid cells into four classes, which we interpret as Low (1), Medium (2), High (3), 
and Very High (4) bird sensitivity. Natural Breaks minimise the squared deviations of a group’s means and 
are a standard method for splitting spatial datasets. The map shows the four final bird sensitivities in a 
format that provides meaningful visualisation and is easier to interpret for a range of stakeholders in 
decision-making processes. 

Including Additional key areas 
Additional key areas are considered as those already designated for bird conservation purposes or for 
conservation of their habitats, regardless of whether they focus on a priority species concerning the 
impacts of energy infrastructure. Examples include some Protected Areas (PAs), Important Bird and 
Biodiversity Areas (IBAs), Key Biodiversity Areas (KBAs), and Ramsar Areas. 

Protected Areas  
Specifically, in this step, we considered the 5,605 protected areas identified by bird experts as key areas 
for birds. We used data from the Collaborative Australian Protected Areas Database (CAPAD) for protected 
area information. The protected areas selected as additional key areas were not included in any previous 
step to prevent data redundancy. The protected areas not considered as additional key areas (5,621) were 
previously considered (see Final Habitat Sensitivity). 

Key Biodiversity Areas (KBAs)  
For Australia, the Important Bird and Biodiversity Areas (IBAs), which are areas of the greatest significance 
for birds worldwide (Donald et al., 2019; BirdLife International, 2025), are integrated also as KBAs triggered 
by birds. KBAs are a global dataset of areas of greatest significance for conserving birds. This dataset is 
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curated by BirdLife International and available through the website (https://datazone.birdlife.org/). The 
most up-to-date version of this data was used (BirdLife International, 2025). 

Ramsar Areas  
Ramsar areas are wetlands of international importance designated under the Ramsar Convention (1971). 
These areas should be safeguarded for various biodiversity reasons, primarily because they serve as safe 
breeding and feeding grounds for birds and as stopovers during migrations. We considered Ramsar areas 
in accordance with the Department of Climate Change, Energy, the Environment, and Water (DCCEE, 
2025). 

Furthermore, other areas already recognised as relevant for bird conservation but not yet officially 
designated or in the process of implementation, such as Shorebird polygons (BirdLife Australia, 2025a), 
Bird Colonies (Quade, 2025), and areas of potential occurrence for sensitive species, were considered as 
additional key areas. 

All the above information was rasterised in a resolution of 5km2. We combined additional key areas with 
very high sensitivity (assigned the maximum value of 4) into the final sensitivity layer, which already 
contained four categories (Figure 5). For each grid cell, the highest sensitivity value was retained. As a 
result, cells with lower initial sensitivity that overlapped spatially with these additional key areas were 
upgraded to the maximum sensitivity value. This approach ensures that areas already recognised as 
important for bird conservation receive the highest sensitivity rating and are avoided from energy planning. 
Likewise, areas previously classified as highly sensitive remain so when overlapping with additional key 
areas. 

All the maps created in STEP 2, STEP 3, STEP 4 and STEP 5 had the Geocentric Datum of Australia 
(GDA2020) as the Projected Coordinate System. 

 

 

Figure 5. Final Sensitivity Map for Onshore Wind development in Australia. See more in AVISTEP – Australia. 

https://datazone.birdlife.org/
https://avistep.birdlife.org/map
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Powerline – High voltage 

Calculating species sensitivity – STEP 1 
The respective national species lists to be assessed were created in agreement with BirdLife Australia, 
and other bird experts. The sensitivity index was calculated for each regularly occurring bird species, 
excluding flightless, vagrant, rare sightings, and restricted seabirds. For Australia, we calculated the 
sensitivity index for 607 bird species following the formula: 

 

 

Collision with energy cables (PwCo). Bird collisions with overhead wires occur during flight when birds 
fail to see ahead the cables or cannot avoid the collision in time. They represent a significant source of 
anthropogenic bird mortality (Loss et al., 2014) and are responsible for the decline of different populations 
(Uddin et al., 2021; Bernardino et al., 2018; Loss et al., 2012). 

To assess the species' sensitivity to overhead collision, we used a trait-based approach similar to Wind 
Farm Onshore, estimating collision mainly from the interaction between Exposure and Susceptibility.  

𝑪𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = (𝐸𝑥𝑝 × 𝑆𝑢𝑠𝑐𝑒𝑝) + 𝐸𝑥𝑡. 𝑟𝑖𝑠𝑘 

 

Bird exposure (Exp) refers to the probability of a bird encountering a powerline tower or an overhead cable, 
based on the time they fly at heights compatible with the powerline vulnerable height (ranging from 10m to 
60m). We classified each species in four different exposure categories:  

• No exposure: Species that are never or very rarely active at a vulnerable height, representing 
flightless, terrestrial, and ground-dwelling birds. Birds that rarely fly at height, in open landscapes 
away from forest vegetation, such as forest dwellers and species that stay low to the ground, were 
also classified in this category.  

• Low exposure: Species that are not active daily at a vulnerable height but spend some time during 
their annual cycle are often represented by migratory and dispersive species, such as migratory 
honeyeaters and altitudinal migrants.  

• Moderate exposure: Species that spend less than 50% of their daily active time at a vulnerable 
height, represented by species that make daily movements across open air space as they 
commute between roosting and foraging sites. This category includes typically many members of 
the following families: corvids, parrots, pigeons and doves, waterfowl, gulls and terns, shorebirds, 
pelicans, cormorants, bustards, cranes, herons and ibis, magpies and birds of prey that hunt from 
a perch or within forests.  

• High exposure: Species that spend more than 50% of their daily active time at a vulnerable height, 
represented by aerial insectivores such as swifts and swallows, and birds of prey that hunt on the 
wing, often from a high soar. Since a bird can collide only when it is exposed, we work with this set 
of weights: No exposure (zero); Moderate (0.333); High (0.666); Very high (1). 

Bird susceptibility (Suscep) refers to the species’ intrinsic characters, which are mainly related to the 
morpho-behavioural and life-history traits linked with flight behaviour. Theoretically, large, heavy, relatively 
small-winged birds with poor vision are most susceptible to collision, while small, light, relatively large-
winged birds with acute vision are least susceptible (Bevanger, 1998). All volant, terrestrial species are 
potentially susceptible, and most fall between these extremes. 

𝑩𝒊𝒓𝒅 𝑺𝒖𝒄𝒆𝒑𝒕𝒊𝒃𝒊𝒍𝒊𝒕𝒚 = (𝑭𝒐𝒓𝒂𝒈. 𝒃𝒆𝒉𝒂𝒗 × 𝑴𝒏𝒗𝒓) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐶𝑜) × (𝐶𝑛𝑆)(1−(𝑆𝑢) ((𝑆𝑢)+0.5)⁄ ) 
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Foraging behaviour (Forag.behav.): Variations in visual field topography among birds have been 
interpreted as adaptations to the specific perceptual challenges posed by the species’ foraging ecology. At 
the same time, visual perception, when combined with specific foraging behaviours during flight, can affect 
the likelihood of bird collision with different human infrastructures.  

Visual topography differs between species, especially in the extent and position of the binocular field 
relative to the bill, and the extent of blind areas above and behind the head. These differences are primarily 
correlated with differences in foraging ecology, even among closely related species (Martin & Portugal 
2011). Birds differ in the vertical extent of their binocular fields, which results in differences in the extent of 
the blind areas to the front of the head, the key region for detecting obstacles in flight. These differences 
must arise primarily due to differences in the positioning of the eyes in the skull. Overall, bird species with 
more comprehensive coverage of the frontal hemisphere gain full visual coverage of the airspace ahead of 
them, regardless of the head position adopted in flight. This is likely to contribute to lower vulnerability to 
collisions. We are interested in the phylogenetic signal for the maximum vertical height of the binocular 
field and foraging ecology based on the family level. Therefore, we classified birds into four different types 
of risk of collision according to eye position in the skull, vertical extension of the binocular visual field, 
foraging behaviour, head position during flying, and diet.  

• Low risk: Birds with frontal eye position, excellent binocular view, and large vertical extension of 
the binocular field. They have forward-facing vision, which means that during flying, they forage 
looking forward, not looking down, catching prey in the air (e.g., some insectivorous birds).  

• Medium risk: Inside medium risk, we can identify two groups: a) Birds with lateral eye position and 
those with limited forward vision. Full celestial/hemisphere view is monocular, with almost no 
blind areas (associated with anti-predator vigilance). Looking for foraging spots when flying. 
Foraging looking forward, not looking down while flying, represented mainly by tactile/filter 
foragers. b) Lateral eye position, forward vision limited. Benefit from monocular vision. But have a 
large vertical extension of the binocular field (small blind area). Looking for foraging spots when 
flying. Foraging looking forward, not looking down, represented mainly by Pecking foragers, using 
the bill like pincers (catching seeds or evasive prey).  

• High risk: More frontal eye position, Excellent binocular vision, but limited vertical extension of 
the binocular field resulting in extensive blind areas. Forward-facing vision, but forages looking 
down. Overall, carrion eaters and birds of prey.  

• Very high: They also benefit from lateral vision. Very limited vertical extension of the binocular field 
(Even a slight 30-degree head turn can send them flying forward blindly), forward-facing vision 
often looking down. Overall, a diet based on a range of stationary sources such as seeds, berries, 
bulbs, and non-evasive animals. 

Manoeuvrability (Mnvr). The scientific literature highlights that wing loading (resulting from body mass 
divided by wing area) is one of the most relevant morphological traits that predicts species' probability of 
colliding and is associated with high manoeuvrability in flight (Bevanger, 1998; Janss, 2000). However, 
measures such as wing area or specific measurements necessary to calculate wing area, such as 
wingspan, are not always available. We demonstrated that wing length is highly correlated with wingspan. 
When bird weight is divided by the wing length, it produces a proxy valid to infer manoeuvrability (D’Amico 
et al., 2019; Reid et al., 2023) that could conserve the same relative difference between species as using 
wing area. Both weight and wing length are commonly recorded measurements and are available for all 
birds worldwide in Tobias et al. (2022). Therefore, we have:  

𝑴𝒏𝒗𝒓_𝒑𝒓𝒐𝒙𝒚 = (
𝒘𝒆𝒊𝒈𝒉𝒕 (𝒈)

𝒘𝒊𝒏𝒈  𝒍𝒆𝒏𝒈𝒕𝒉 (𝒄𝒎)
) 

 

Extra risk factor (Ext.risk): Some species possess additional or aggravating risk factors for collisions that 
cannot be generalised across all species. For example, even a bird with great manoeuvrability and 
adequate vision can be frequently involved in collisions. In those cases, other intrinsic traits, such as very 
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high flight speeds, or flock-oriented flight patterns, may play a role, especially when combined with low-
light conditions typical of crepuscular or nocturnal activity. However, these traits alone do not universally 
predict collision risk: not all fast-flying, flocking, or nocturnal species are equally affected. Therefore, when 
we could identify a special trait, we gave some species with at least one of these potential special traits an 
additional weight = 0,2 as an extra risk factor. Additionally, we assigned an extra weight of 1 to species 
frequently recorded as victims of overhead cable collisions worldwide. An extra weight of 1 was also given 
to a few Australian species that faced threats from energy infrastructure in their National Recovery Plan.  

*It's important to recognise that any flying species may eventually collide. In addition to intrinsic species 
characteristics, collisions can occur due to other external environmental and technical factors, and the 
frequency of recordings may be attributed to population abundance. Therefore, a species that is not prone 
to collisions, flying in extreme weather conditions such as wind and low light availability, combined with a 
lack of bird flight diverters, may also collide. Our approach aims to capture collision risk based only on 
intrinsic aspects of the species. 

The second part of our formula is calculated using the same approach and values as for the Wind Offshore.  

Conservation Status (CnS) was assigned to each species by integrating information from both the Global 
Red List (GRL) and the National Red List (NRL). Species were then classified according to their 
Conservation Status and Population Trend (if population are increasing, stable or decreasing in numbers). 
To determine the relative importance among different categories, we used the Analytic Hierarchy Process 
(AHP), applying a Saaty pairwise comparison matrix across categories to evaluate and contrast their 
relevance to extinction risk. The assessment was conducted in collaboration with colleagues from the 
IUCN Red List. The weights assigned increased exponentially according to the highest threat category as 
follows:  

• Critically Endangered (CR) + any species with number of mature individuals < 1,000 = 1.00 
• Endangered (EN) + any species with number of mature individuals < 2,500 = 0.59 
• Vulnerable (VU) + any species with number of mature individuals < 10,000 = 0.41 
• Near Threatened (NT) = 0.12 
• Least Concerned (LC) and population trend decreasing = 0.08 
• LC and population trend increasing/stable = 0.06 

We did not have data-deficient (DD) species. The same values were considered for the Global and National 
Red List categories. Then, the mean value was used as a final CnS since the categories may differ in the 
global and national assessments. 

𝑪𝒏𝑺 = (
𝑮𝑹𝑳 + 𝑵𝑹𝑳

𝟐
) 

  

Annual adult survival (Su). The population-level impact of a single individual fatality event depends 
primarily on the species' life history traits. Specific life history traits, such as fecundity, age of maturity, and 
adult survival, are particularly relevant. K-selected species are characterised by low fecundity, late ages of 
maturity and high survival; thus, adult mortality impacts these populations (Niel & Lebreton, 2005; Sæther 
& Bakke, 2000). The species groups with the highest rates of impact from wind development tend to be K-
selected species such as Accipitridae, Ciconiidae, or Bucerotidae (Thaxter et al., 2017); thus, it is a factor 
that must be carefully considered when evaluating impacts on bird conservation. We employed annual 
adult survival estimated for all bird species to include a metric that could capture these life history factors 
(Bird et al., 2020). For Australian birds, the adult annual survival ranged from 0.41 to 0.93. 

To combine the four parameters above in the formula and balance their contributions to the sensitivity 
index, we rescaled all values from 0.01 to 1, following the recommendations of Certain et al. (2015).  

We ranked all species according to their sensitivity values to identify the priority species for spatial 
assessment. To identify the subset of species most affected, we split the ranking into different classes 
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using a cluster method proposed by Jiang (2013) for data with heavy-tailed distributions. The method 
partitions the class intervals and establishes the number of groups through an iterative approach. This 
approach resulted in five groups, which we interpreted as extremely high, very high, high, medium, and low 
sensitivity. To be more conservative, we considered the species in all categories different from low 
sensitivity as priority species, totalling 113 Australian birds (See “AVISTEP_Australia_PW_Collision.xlsx” in 
Sup. Material). 

 

Mapping the distribution area for priority species – STEP 2 
We followed the same approach as for onshore wind farms. Go to STEP 2 to read more.  

 

Creating a multispecies combination map – STEP 3 
We created a multispecies combination map by summing the sensitivity maps for all species. For onshore 
wind in Australia, we combined rasters for 113 priority species. Thus, the final score for each grid cell 
results from the summed values of all the species present in that cell. The bird sensitivity map captures the 
cumulative impact over the range of species present in each area. The final cumulative sensitivity map was 
rescaled in values between 0 and 1 (Figure 6).  

∑ 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

 

Figure 6. The cumulative sensitivity raster combining the sensitivity layers for 113 priority species facing impacts from 
Powerlines – High voltage. Values rescaled between zero and 1. 
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Adding other important areas for birds and conservation – STEP 4 
We followed precisely the same approach as for onshore wind farms. Go to STEP 4 to read more. 

 

Identifying final sensitivity categories – STEP 5 
We followed precisely the same approach as for onshore wind farms. Go to STEP 5 to read more. The final 
map is in Figure 7. 

 

 

Figure 7. Final Sensitivity Map for Powerlines – High-Voltage Development in Australia. See more in AVISTEP – 
Australia. 

 

Powerline – Medium and Low voltage 

Calculating species sensitivity – STEP 1 
Distribution lines primarily impact birds through collisions with overhead cables and electrocution on 
energy pylons and cables. Therefore, in addition to considering the species most sensitive to collision using 
the formula mentioned for the High-voltage lines (PwCo), a specific formula for calculating and identifying 
species sensitive to electrocution was also applied separately: 

 

 

To assess the species' sensitivity to electrocution on energy pylons, we also estimated the risk of 
electrocution from the interaction between exposure and susceptibility.  

𝑬𝒍𝒆𝒄𝒕𝒓𝒐𝒄𝒖𝒕𝒊𝒐𝒏 = (𝐸𝑥𝑝 × 𝑆𝑢𝑠𝑐𝑒𝑝) + 𝐸𝑥𝑡. 𝑟𝑖𝑠𝑘 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = (𝑃𝑤𝐸𝑙𝑒𝑐) × (𝐶𝑛𝑆)(1−(𝑆𝑢) ((𝑆𝑢)+0.5)⁄ ) 

https://avistep.birdlife.org/map
https://avistep.birdlife.org/map
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Bird exposure (Exp): To assess behavioural exposure in the electrocution context, we classified each 
species according to its use of energy pylons and cables for perching or nesting. We used four different 
exposure categories:  

• No exposure for birds that never or very rarely encounter powerlines, so they never perch on wires, 
poles and pylons. Flightless species, terrestrial and ground-dwelling species such as emus, 
cassowaries, mound builders, lyrebirds, logrunners, and whipbirds were included in this category. 

• Low exposure for birds that utilise energy cables and pylons but do so infrequently or are of a small 
size and therefore have a reduced risk of simultaneously contacting live elements. Swallows, 
swifts, honeyeaters, and Flycatchers are examples. 

• Moderate exposure: Birds often utilise electricity pylons for hunting, resting and singing, but not 
to the extent that high exposure species do.  

• High exposure: birds frequently have daily exposure to live elements. Those include species that 
routinely roost on powerlines, have a propensity to investigate electrical components, routinely 
nest on pylons, regularly perch on pylons and have large bodies and/or wingspans. Examples are 
some raptors, such as eagles, storks, and psittacine birds, such as cockatoos, parakeets and 
macaws. 

Bird susceptibility (Suscep) refers to the species’ intrinsic aspects, which are mainly related to the 
morphological traits. Wingspan is often selected as the best indicator of morphological susceptibility to 
electrocution in birds (Bevanger, 1998), but it is not available for most species. We used wing length as a 
proxy because this measure often represents the overall body size better than other univariate traits (e.g., 
Wiklund, 1996) and correlates well with wingspan in various bird groups (Biasotto et al., 2021). Wing length 
is available for all birds worldwide in Tobias et al. (2022).  

Extra risk factor (Ext. risk): Additionally, Australian species that faced threats from energy infrastructure 
in their National Recovery Plan and are frequently recorded as victims in other countries had an extra 
weight of 1. 

The second part of our formula is calculated using the same approach and values as for the Wind Offshore.  

Conservation Status (CnS) was assigned to each species by integrating information from both the Global 
Red List (GRL) and the National Red List (NRL). Species were then classified according to their 
Conservation Status and Population Trend (if population are increasing, stable or decreasing in numbers). 
To determine the relative importance among different categories, we used the Analytic Hierarchy Process 
(AHP), applying a Saaty pairwise comparison matrix across categories to evaluate and contrast their 
relevance to extinction risk. The assessment was conducted in collaboration with colleagues from the 
IUCN Red List. The weights assigned increased exponentially according to the highest threat category as 
follows:  

• Critically Endangered (CR) + any species with number of mature individuals < 1,000 = 1.00 
• Endangered (EN) + any species with number of mature individuals < 2,500 = 0.59 
• Vulnerable (VU) + any species with number of mature individuals < 10,000 = 0.41 
• Near Threatened (NT) = 0.12 
• Least Concerned (LC) and population trend decreasing = 0.08 
• LC and population trend increasing/stable = 0.06 

We did not have data-deficient (DD) species. The same values were considered for the Global and National 
Red List categories. Then, the mean value was used as a final CnS since the categories may differ in the 
global and national assessments. 

𝑪𝒏𝑺 = (
𝑮𝑹𝑳 + 𝑵𝑹𝑳

𝟐
) 
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Annual adult survival (Su). The population-level impact of a single individual fatality event depends 
primarily on the species' life history traits. Specific life history traits, such as fecundity, age of maturity, and 
adult survival, are particularly relevant. K-selected species are characterised by low fecundity, late ages of 
maturity and high survival; thus, adult mortality impacts these populations (Niel & Lebreton, 2005; Sæther 
& Bakke, 2000). The species groups with the highest rates of impact from wind development tend to be K-
selected species such as Accipitridae, Ciconiidae, or Bucerotidae (Thaxter et al., 2017); thus, it is a factor 
that must be carefully considered when evaluating impacts on bird conservation. We employed annual 
adult survival estimated for all bird species to include a metric that could capture these life history factors 
(Bird et al., 2020). For Australian birds, the adult annual survival ranged from 0.41 to 0.93. 

To combine the parameters above in the formula and balance their contribution to the sensitivity index, we 
rescaled all values from 0.01 to 1, following recommendations from Certain et al. (2015). 

We ranked all species according to their sensitivity values to identify the priority species for spatial 
assessment. To identify the subset of species most affected, we split the ranking into different classes 
using a cluster method proposed by Jiang (2013) for data with heavy-tailed distributions. The method 
partitions the class intervals and establishes the number of groups through an iterative approach. This 
approach resulted in five groups, which we interpreted as extremely high, very high, high, medium, and low 
sensitivity. To be more conservative, we considered the species in all categories different from low 
sensitivity as priority species, totalling 135 Australian birds (See 
“AVISTEP_Australia_PW_Electrocution.xlsx” in Sup. Material).  

 

Mapping the distribution area for priority species – STEP 2 
We followed the same approach as for onshore wind farms. Go to STEP 2 to read more. 

 

Creating a multispecies combination map – STEP 3 
We created a multispecies combination map by summing the sensitivity maps for all species. For onshore 
wind in Australia, we combined rasters for 135 priority species for electrocution impact. Thus, the final 
score for each grid cell results from the summed values of all the species present in that cell. The bird 
sensitivity map captures the cumulative impact over the range of species present in each area. The final 
cumulative sensitivity map was rescaled in values between 0 and 1.  

∑ 𝑙𝑛(𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 1) ∗ 𝑆𝐼

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

 

Since power distribution lines are causing both bird collisions and electrocution, as a precautionary 
approach, we combined the cumulative priority species map for electrocution (considering 135 species 
and their respective Sis, Figure 8, left) with the priority species map for powerline collision (113 species 
and their respective Sis, Figure 8, right), conserving the maximum value for each grid cell (Figure 9). 
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Figure 8. Left panel showing the cumulative priority species map for electrocution (considering 135 species and their 
respective SI; Right panel showing the cumulative priority species map for powerline collision (113 species and their 
respective SI). 

 

Figure 9. Cumulative Sensitivity map considering both Collision with Powerlines and Electrocution priority species. 
Collision and Electrocution were mapped individually and combined, preserving the maximum value in each grid cell. 
Values rescaled between zero and 1. 

 

Adding other important areas for birds and conservation – STEP 4 
We followed precisely the same approach as for onshore wind farms. Go to STEP 4 to read more. 
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Identifying final sensitivity categories – STEP 5 
We followed the same approach as for onshore wind farms. Go to STEP 5 to read more. The final map is in 
Figure 10. 

 

 

Figure 10. Final Sensitivity Map for Powerlines – Low- and Medium-Voltage Developments in Australia. See more in 
AVISTEP – Australia. 

 

Solar Photovoltaic (PV) 
The species-specific sensitivity based on different impacts created for the other types of energy 
developments does not apply to the context of solar photovoltaic energy. We have used a precautionary 
approach, considering that the presence of solar photovoltaics would result in habitat loss and/or 
degradation for all species that occur in the area, although some species can indeed coexist with solar PV 
installations. 

 

Calculating Sensitivity for all species occurring in the country – STEP 1 
We considered a list of all species occurring in the country, individually weighted by their respective 
Conservation Status. For Australia, we worked with a total of 607 species. 

Conservation Status (CnS) was assigned to each species by integrating information from the Global Red 
List (GRL). Species were then classified according to their Conservation Status and Population Trend (i.e., 
whether populations are increasing, stable, or decreasing in numbers). To determine the relative 
importance among different categories, we used the Analytic Hierarchy Process (AHP), applying a Saaty 
pairwise comparison matrix across categories to evaluate and contrast their relevance to extinction risk. 
The assessment was conducted in collaboration with colleagues from the IUCN Red List. 

The weights assigned increased exponentially according to the highest threat category as follows:  

https://avistep.birdlife.org/map
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• Critically Endangered (CR) + any species with number of mature individuals < 1,000 = 1.00 
• Endangered (EN) + any species with number of mature individuals < 2,500 = 0.59 
• Vulnerable (VU) + any species with number of mature individuals < 10,000 = 0.41 
• Near Threatened (NT) = 0.12 
• Least Concerned (LC) and population trend decreasing = 0.08 
• LC and population trend increasing/stable = 0.06 

We did not have data-deficient (DD) species.  

 

Mapping the species distribution according to the Sensitivity – STEP 2 
We used a version of the area of habitat (AOH) maps explicitly created for Australian terrestrial birds (the 
data are under review and available on request). The AOH maps represent the utilised habitats within a 
species’ range and can be considered an intermediate step between the Extent of Occurrence (EOO) and 
Area of Occupancy (AOO). These maps were created with a 100x100m grid cell resolution using a modelling 
approach based on the Australian National Vegetation Information System (NVIS v.6). The NVIS classes 
were translated to species’ habitat preferences according to Garnet et al. (2015) inside species distribution 
maps combining BirdLife International & Australian Bird Guide ranges. The AOH maps were created using 
binary information representing presence and absence, and were based only on breeding, non-breeding, 
and resident distribution. 

A raster layer was produced for each species (607), representing the species' occurrence probability as the 
proportion of suitable habitat area in each grid cell. More specifically, since our assessment was 
conducted at a 5x5 km grid cell resolution, we transformed the original AOH maps to match our resolution, 
calculating the total percentage of AOH present in each cell.  

We adapted the formula by Bradbury et al. (2014) to weight the raster for each species by its respective 
sensitivity index and the amount of habitat in each grid cell. The final species sensitivity value was assigned 
for each grid cell following the formula below: 

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑟𝑒 = 𝑙𝑛(% 𝐴𝑂𝐻 𝑏𝑦 𝑔𝑟𝑖𝑑 + 1) ∗ 𝐶𝑛𝑆 

 

Creating a species richness map weighted by Conservation Status – STEP 3 
We created a multispecies combination map by summing the sensitivity maps for all species. Thus, the 
final score for each grid cell results from the summed values of all the species present in that cell. The bird 
sensitivity map captures the cumulative impact over the range of species present in each area. The final 
cumulative sensitivity map was rescaled in values between 0 and 1 (Figure 11).  

∑ 𝑙𝑛(% 𝐴𝑂𝐻 𝑏𝑦 𝑔𝑟𝑖𝑑 + 1) ∗ 𝑆𝐼

𝑛

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

 

https://digital.atlas.gov.au/maps/digitalatlas::national-vegetation-information-system-nvis-version-6-0-extant-vegetation/about?path=
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Figure 11. Bird species richness map weighted by Conservation Status. 

 

Adding other important areas for birds and conservation – STEP 4 
To mitigate the impact of renewable energy, it is crucial to focus development away from natural habitats 
and important areas for biodiversity and towards areas with low ecological value, such as those already 
heavily modified by human activity (Kiesecker et al., 2019). For this purpose, in addition to the priority 
species cumulative surface, we also integrated various spatial information regarding areas relevant to bird 
and biodiversity conservation, which were integrated using Multicriteria Analysis – MCA. First, for Australia, 
we worked on different levels to map bird sensitivity (Figure 12). 

 

Figure 12. Overall workflow showing the main spatial layers integrated to create the final solar photovoltaic map 
displayed on AVISTEP.  
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A) Due to a combination of geological, climatic, and evolutionary factors, Australia hosts many endemic 
bird subspecies distributed across diverse habitats, from tropical rainforests in the north to deserts, 
temperate forests, and alpine zones in the south and east. Although many of these subspecies may not be 
directly affected by impacts from energy infrastructures, they are very rare and have a restricted 
distribution. Therefore, they warrant priority in conservation efforts and spatial planning to avoid their 
distribution areas. To account for these subspecies, we developed a spatial layer representing the 
“Richness of Threatened Subspecies”, based on polygons delineating the distribution areas of 84 
subspecies classified under the threat categories Near Threatened (NT), Vulnerable (VU), Endangered (EN), 
and Critically Endangered (CR). To produce a Final Species Sensitivity (A), this layer was combined with the 
priority species cumulative map, but with less weight (contributing with only 20%) since the polygons are 
less accurate regarding the probability of finding the species when compared to the information used to 
prepare the cumulative map of priority species (contributing with 80%). All the maps were rescaled into 0 
and 1.  

F𝑖𝑛𝑎𝑙 𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑆𝑜𝑙𝑎𝑟 = (𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑒𝑛𝑠𝑖.× 0.8) + (𝑅𝑖𝑐ℎ𝑛𝑒𝑠𝑠 𝑜𝑓 𝑇ℎ𝑟𝑒𝑎𝑡𝑛𝑒𝑑 𝑠𝑢𝑏𝑠𝑝 × 0.2) 

B) To identify habitats most relevant for bird conservation, we used data from the National Vegetation 
Information System (NVIS) Version 7.0, which provides delineations of 32 major Vegetation Groups 
representing native vegetation classes across Australia at a 100 m resolution. We developed a bird richness 
map based on 609 Australian bird species, weighting each species according to its global Conservation 
Status as follows: Critically Endangered (CR) + any species with number of mature individuals < 1,000 = 
1.00; Endangered (EN) + any species with number of mature individuals < 2,500 = 0.59; Vulnerable (VU) + 
any species with number of mature individuals < 10,000 = 0.41; Near Threatened (NT) = 0.12; Least 
Concerned (LC) and population trend decreasing = 0.08; LC and population trend increasing/stable = 0.06. 
For each grid cell, the cumulative value of bird richness & conservation status was calculated, and the final 
values were rescaled to a range of zero to one. 

Vegetation classes were ordinated using Principal Component Analysis (PCA), considering the proportion 
of each vegetation class in Australia, the median bird richness and conservation status, and the maximum 
richness value within each class. Bartlett’s test of sphericity (Bartlett, 1951) was applied to evaluate the 
suitability of the data for factor analysis. Composite scores were obtained by multiplying the factors 
derived from the first ordination axis by that axis’s shared variance. Based on these results, eleven 
vegetation classes were identified as being important for bird conservation: 1)Eucalypt Open Forests, 
2)Eucalypt Tall Open Forests, 3)Eucalypt Woodlands, 4)Rainforests and Vine Thickets, 5)Casuarina Forests 
and Woodlands, 6)Mangroves, 7)Tussock Grasslands, 8)Callitris Forests and Woodlands, 9)Eucalypt Low 
Open Forests, 10)Heathlands, and 11)Inland Aquatic - freshwater, salt lakes, lagoons (Figure 13). To 
support this assessment, we also referred to the EPBC Act List of Threatened Ecological Communities and 
the Australian National Botanic Gardens – Centre for Australian National Biodiversity Research. 

The NVIS map was subsequently reclassified by assigning a value of 1 to the 11 vegetation classes selected 
and a value of 0 to all others. The percentage of important vegetation within each 5x5 km cell was then 
calculated following the same procedure as in Step 2. Consequently, cells with a higher proportion of 
important vegetation received higher sensitivity scores.  
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Figure 13. Eleven classes selected to represent the rarest vegetation in Australia in accordance with PCA rank analysis, 
EPBC Act List of Threatened Ecological Communities and the Australian National Botanic Gardens – Centre for 
Australian National Biodiversity Research. 

 

To complement the habitat assessment, in addition to creating the Rare vegetation & high bird conservation 
map, we also included the Protected Areas database from Collaborative Australian Protected Areas 
Database (CAPAD 2024). This database provides spatial information on Australia’s protected areas at 
national, state, and territory levels, including IUCN categories (i.e., categories Ia to VI), which classify 
protected areas according to their management objectives (Dudley, 2008). 

First, all protected areas (PAs) that were designated specifically for bird conservation or that represent 
essential habitats for certain bird species were identified. This resulted in a set of 5,605 PAs, which were 
extracted and carried forward to the next step (see STEP 5). From the remaining PAs, different weights were 
assigned according to the IUCN management categories. PAs classified as Ia (Strict Nature Reserve), Ib 
(Wilderness Area), II (National Park), III (Natural Monument or Feature), and IV (Habitat/Species 
Management Area) were given the highest weight of 1.0. In contrast, PAs under categories V (Protected 
Landscape or Seascape) and VI (Protected Area with Sustainable Use of Natural Resources) were 
considered lower priorities for bird conservation, as they allow a broader range of human activities. These 
were assigned a weight of 0.4. The set of weights was determined using the Analytic Hierarchy Process 
(AHP). 

All the above information was rasterised at a resolution of 5 km². The final habitat sensitivity map was 
created by combining the Rare Vegetation & High Bird Conservation Value map with the IUCN-triggered PA 
map, both given the same weight in the MCA combination according to the equation: 

F𝑖𝑛𝑎𝑙 𝐻𝑎𝑏𝑖𝑡𝑎𝑡 𝑆𝑒𝑛𝑠𝑖. = (𝑅𝑎𝑟𝑒 𝑣𝑒𝑔. &ℎ𝑖𝑔ℎ 𝑏𝑖𝑟𝑑 𝑐𝑜𝑛𝑠. 𝑣𝑎𝑙𝑢𝑒 × 0.5) + (𝑃𝐴𝑠𝐼𝑈𝐶𝑁𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑒𝑑 × 0.5) 

C) Due to the relevance for bird and conservation, the Final Habitat Sensitivity and Bird Sensitivity maps 
were combined, preserving the maximum value of each grid cell as follows: 

𝐹𝑖𝑛𝑎𝑙 𝐵𝑖𝑟𝑑 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑥, 𝑦) = max (𝐴(𝑥, 𝑦), 𝐵(𝑥, 𝑦)) 

After generating the Final Bird Sensitivity Map, the final step involved reducing the overall contribution of 
human-induced areas, as this specific land-use information is not represented in the main vegetation map. 
To address this, we incorporated data from the Catchment Scale Land Use of Australia (CLUM), version 2 
(ABARES 2024), which provides a national compilation of catchment-scale land-use data for Australia. 
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CLUM is a seamless raster dataset that integrates land-use information from all state and territory 
jurisdictions, compiled at a spatial resolution of 50x50 m. 

The following land-use classes were selected for adjustment: Intensive horticulture, Intensive animal 
production, Manufacturing and industrial, Services, Utilities, Transport and communication, Mining, and 
portions of Plantation forest, Irrigated plantation, and Residential areas. These classes were resampled to 
match our 5x5 km grid, and a maximum value of 0.5 was subtracted from the Final Bird Sensitivity Map to 
reflect their reduced suitability for bird conservation. 

 

Identifying final sensitivity categories – STEP 5 
Classificando o valor de sensibilidade em categorias  
Our sensitivity data over grid cells display non‐uniform distributions with evident clustering data. Thus, we 
have used Jenks’ Natural Breaks algorithm (Natural breaks function, ArcGIS Pro, ESRI 2021) to classify 
sensitivity values across grid cells into four classes, which we interpret as Low (1), Medium (2), High (3), 
and Very High (4) bird sensitivity. Natural Breaks minimise the squared deviations of a group’s means and 
are a standard method for splitting spatial datasets. The map shows the four final bird sensitivities in a 
format that provides meaningful visualisation and is easier to interpret for a range of stakeholders in 
decision-making processes. 

Including Additional key areas 
Additional key areas are considered as those already designated for bird conservation purposes or for 
conservation of their habitats, regardless of whether they focus on a priority species concerning the 
impacts of energy infrastructure. Examples include some Protected Areas (PAs), Important Bird and 
Biodiversity Areas (IBAs), Key Biodiversity Areas (KBAs), and Ramsar Areas. 

Protected Areas  
Specifically, in this step, we considered the 5,605 protected areas identified by bird experts as key areas 
for birds. We used the data from the Collaborative Australian Protected Areas Database: protected area 
data (CAPAD). The protected areas selected as additional key areas were not included in any previous step 
to avoid data redundancy. The protected areas not considered as additional key areas (5,621) were 
considered previously (STEP 4). 

Key Biodiversity Areas (KBAs)  
For Australia, the Important Bird and Biodiversity Areas (IBAs), which are areas of the greatest significance 
for birds worldwide (Donald et al. 2019; BirdLife International, 2025), are integrated also as KBAs triggered 
by birds. KBAs are a global dataset of areas of greatest significance for conserving birds. This dataset is 
curated by BirdLife International and available through the website (https://datazone.birdlife.org/). The 
most up-to-date version of this data was used (BirdLife International, 2025).  

Ramsar Areas  
Ramsar areas are wetlands of international importance designated under the Ramsar Convention (1971). 
These areas should be safeguarded for various biodiversity reasons, primarily because they serve as safe 
breeding and feeding grounds for birds and as stopovers during migrations. We considered Ramsar areas 
in accordance with the Department of Climate Change, Energy, the Environment, and Water (DCCEE, 
2025). 

Furthermore, other areas already recognised as relevant for bird conservation but not yet officially 
designated or in the process of implementation, such as Shorebird polygons (BirdLife Australia, 2025a), 
Bird Colonies (Quade, 2025), and areas of potential occurrence for sensitive species, were considered as 
additional key areas. 

All the above information was rasterised in a resolution of 5km2. We combined additional key areas with 
very high sensitivity (assigned the maximum value of 4) into the final sensitivity layer, which already 

https://datazone.birdlife.org/
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contained four categories (Figure 14). For each grid cell, the highest sensitivity value was retained. As a 
result, cells with lower initial sensitivity that overlapped spatially with these additional key areas were 
upgraded to the maximum sensitivity value. This approach ensures that areas already recognised as 
important for bird conservation receive the highest sensitivity rating and are avoided from energy planning. 
Likewise, areas previously classified as highly sensitive remain so when overlapping with additional key 
areas. 

All the maps created in STEP 2, STEP 3, STEP 4 and STEP 5 had the Geocentric Datum of Australia 
(GDA2020) as the Projected Coordinate System.  

 

Figure 14. Final Sensitivity Map for Solar - Photovoltaic developments in Australia. See more in AVISTEP – Australia. 

 

Offshore Wind Energy 

Delineate Area of Interest (AOI) – STEP 1 
The first step in our offshore sensitivity analysis was delineating our Area of Interest (AOI). For Australia, the 
extent of the entire Exclusive Economic Zone (EEZ) was not considered a suitable boundary for analysis. 
Australia has a large EEZ, with some areas located very far the mainland, including around external 
territories such as Norfolk Island, Christmas Island and Macquarie Island. These remote offshore areas are 
unlikely to face offshore wind development in oncoming years. Therefore, the AOI boundary was manually 
defined in ArcGIS.  

First, we excluded areas lacking available wind resource data (World Bank Group, 
globalwindatlas.info/en/). Second, areas around external territories that were not connected to the main 
wind resource data surrounding the coast of mainland Australia and Tasmania were removed. Using this 
reduced layer, maximum distances from the coast were estimated at various points from the coast of 
mainland Australia and Tasmania. From this, the typical distance across the coast was calculated and a 
buffer distance of 200km was selected. Using the coastline of mainland Australia and Tasmania, as well as 
two large islands in the Bass Strait (King Island and Flinders Island), a 200km extension from the coast was 
made using the Buffer tool in ArcGIS Pro, cropped to the extent of the EEZ. The AOI boundary was then 

https://avistep.birdlife.org/map
https://globalwindatlas.info/en/
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rasterised to a 5x5km grid using a suitable projection (Australian Albers Equal Area, GDA94) to form the 
basemap of our analysis. This boundary was used to screen species and data to be included in subsequent 
analysis (Figure 15). 

 

 

Figure 15: The process of delineating the Area of Interest (AOI) for the AVISTEP offshore analysis in Australia in ArGIS. 
Step one, the full extent of the Australian Exclusive Economic Zone (A) was reduced based on the available wind data 
(Global Wind Atlas) for the region (B). wind data for external territories was excluded. Next, an average estimate of 
distance from the coast was taken to determine a suitable buffer(C). A buffer of 200km was extended from the coast 
and then clipped to the extent of the EEZ along the northern boundary in ArcGIS (D). 

 

Selecting Species for Analysis – STEP 2 
For Australia, we identified marine species that were “regularly occurring” within the AOI. The flow chart 
below shows the range of sources we consider before a species is ultimately included or excluded (see 
Figure 16). Collating the seabird species list for offshore analysis is a process that we validate with local 
partners and experts where available. First, we obtained a comprehensive working list of all bird species in 
Australia from the BirdLife partner in the region (BirdLife Australia, 2022). We selected the marine species 
from this list and investigated the regularity of occurrence for each species within the selected AOI. This 
required a review of range maps for each species (HBW & BirdLife International, 2024) and local literature 
to further inform details of individual species distribution and frequency of occurrence (this includes field 
guides for Australia, rare birds lists and telemetry data or scientific papers that included the spatial 
distribution of relevant species). Some species listed as seabirds can exhibit both marine and onshore 
activity in their ranges (for example, species such as Cormorants, Terns and Grebes). For these groups, 
their distribution was checked within the AOI using available evidence and expert elicitation. Our species 
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list was reviewed by BirdLife Australia and other local experts on various occasions before being finalised. 
After review, 83 species were selected for analysis (Table 1). 

 

 

Figure 16: Flowchart of the decision-making process for seabird species selection in AVISTEP offshore analysis. The 
process starts with key sources (in red), additional corroborating sources are in yellow, country-specific distribution 
requirements are in blue. The process ends with a species being included or excluded from the species list.  

 

Table 1: A list of all analysed species for AVISTEP offshore wind sensitivity maps in Australia, grouped by family. This 
includes 83 seabird species and 10 families. 
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Calculating Sensitivity for all Selected Species – STEP 3 
Following the selection of species, we calculated sensitivity for all listed species. We estimated the 
individual risk factors collision (Co) and displacement (Di), along with the population level susceptibility 
(PopS). Using a trait-based approach, we estimated the level of sensitivity to offshore wind development 
for each species. As with previous projects, collision and displacement were calculated separately as 
these are distinct pressures (Furness et al., 2013; Bradbury et al., 2014; Certain et al., 2015). Both were 
then combined with a population susceptibility score (PopS) to create an overall sensitivity to both collision 
(CoSI) and displacement (DiSI). As there is much more certainty regarding conservation status than 
collision and displacement, the population susceptibility score was given a higher weight in our 
calculations. 

Contributing factors were divided into primary, aggravating and additional factors. Primary factors are 
inherently risky behaviour, traits, or other parameters that directly contribute to a species’ sensitivity. 
Aggravating factors exacerbate an existing risk but have no inherent risk of their own (Certain et al., 2015). 
Additional factors are factors that reflect a known risk for a species that cannot be captured by primary or 
aggravating factors but should still be reflected in the calculation of the sensitivity index. For Australia, the 
only additional risk included was for evidence of collision  

Population Susceptibility (PopS) was used as a factor to address the disparity in vulnerability of different 
seabird populations. Seabird species that are at a high-risk for extinction are very vulnerable to threats 
which may further population decline. 

Population susceptibility was calculated as follows: 

𝑃𝑜𝑝𝑆  =  𝐶𝑛𝑆  ×  𝑆𝑢  

 

Conservation Status (CnS): We classified the primary population-level risk for a species as their 
conservation status. Values were attributed according to their Red List status, population size and 
population trend. The Global Red List categories were defined as follows: 

• Critically Endangered (CR) + any species with number of mature individuals < 1,000 = 1.00 
• Endangered (EN) + any species with number of mature individuals < 2,500 = 0.59 
• Vulnerable (VU) + any species with number of mature individuals < 10,000 = 0.41 
• Near Threatened (NT) = 0.12 
• Least Concerned (LC) and population trend decreasing = 0.08 
• LC and population trend increasing or stable = 0.06 

To determine the relative importance among different categories, we used the Analytic Hierarchy Process, 
applying a Saaty pairwise comparison matrix across categories to evaluate and contrast their relevance to 
extinction risk. The assessment was conducted in collaboration with colleagues from the BirdLife 
International Red List Team who are responsible for assessing all bird species for the IUCN Red List. 
Weights assigned increased approximately exponentially according to the highest threat category.  

We calculated mean of the values for the Global Red List and the National Red List (Garnett & Baker, 2021). 
If the species was Least Concern, scores are given according to the global population trend. The Australian 
Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) includes Red List assessments 
for a subset of species. We added 0.05 if a species was listed as a Threatened Species under the EPBC act 
with a more severe threat status than the mean of the Global and Australian Red List statuses (according 
to the Species Profile and Threats Database accessed September 2025).  

Annual Adult Survival (Su): Populations of long-lived, slow breeding species have limited ability to recover 
from additional moralities or poor breeding success. We used species’ annual adult survival as an 



159 
 

aggravating factor to capture these life history traits (Bird et al., 2020), by multiplying Su by the conservation 
status (CnS).  

Collision (Co):  Offshore structures are novel additions to the marine environment that can pose a risk of 
fatal collisions for seabirds. Such collisions may occur either with the moving rotor blades of turbines or 
with the stationary components of the structure below. In recent years, collision risk has been the focus of 
windfarm sensitivity analysis in areas with established offshore wind industries (Garthe & Hüppop, 2004; 
Furness et al., 2013; Bradbury et al., 2014; Certain et al. 2015). Despite ongoing research into collision, 
there is still uncertainty surrounding the drivers and the frequency of collision of seabirds. As a result, risk 
of collision is estimated by scoring various behavioural and morphological traits of individual species. 

Collision was calculated as follows: 

𝐶𝑜  =  𝐹𝑙𝑖𝐵  ×   (
𝐹𝑙𝑖𝑀  +  𝑁𝑜𝑐𝑡

2
) +  𝐴𝑑𝑑𝑅 

 

Flight Behaviour (FliB): We used a species-level trait-based approach to identify the primary risk for 
seabird collision. For previous offshore maps, this factor was a measurement of time spent flying in the 
rotor swept zone based on estimates of flight height and flight time information from literature (please 
review manuals prior to 2025). However, due to lack of good quality flight height information and the 
possibility of collision with static structures under the rotor swept zone (defined here as 30-350m) we 
categorised levels of risky flight behaviour which included flight below the rotor-swept zone. Based on 
values used in Reid et al. (2023) and Reid & Baker (2025), the rotor-swept zone is assumed to be 30-350m. 
Using an existing risk assessment that measured and categorised flight behaviour according to flight height 
and foraging type, we established 6 categories of exposure (Reid et al. 2023; Reid & Baker, 2025). Based on 
local expert advice, adjustments were made on a species-by species basis.  

Flight behaviours were categorised as follows: 

Flight Behaviour Species groups Score 

Very High Risk Gannets, Boobies 1.00 

High Risk Frigatebirds, Noddies, Frigatebirds, Skuas, Terns 0.85 

Moderate Risk Cormorants, Gadfly Petrels, Gulls, Tropicbirds 0.70 

Low Risk Shearwaters, Petrels, Prions, Fulmars 0.55 

Very Low Risk Albatrosses, Northern Storm-petrels, Southern Storm-petrels 0.40 

No Risk Penguins 0 

 

Flight Manoeuvrability (FliM) & Nocturnal Activity (Noct): Once flying at a dangerous height, there are 
factors that may impact an individual’s ability to avoid possible collision. Based on previous work on 
collision sensitivity factors (Garthe & Hüppop, 2004; Furness et al., 2013; Bradbury et al., 2014; Certain et 
al., 2015), flight manoeuvrability and nocturnal activity were identified as aggravating factors for collision. 
The application of aggravating factors assumes that, when all other factors are equal, a less manoeuvrable 
species or a species that is more active at night may be more vulnerable to collision. When combining 
factors, how they interact determines how best to include them. As nocturnal activity and flight 
manoeuvrability are considered to aggravate the risk of flying near offshore turbines, we consider them as 
interactive with the exposure risk values for each species. Therefore, this factor is multiplied by the risk of 
exposure to rotor blades due to flight behaviour (FliB). Since there is a lack of evidence suggesting that 
manoeuvrability and nocturnal activity interact dependently in relation to collision risk, we used the 
average between the two (Certain et al., 2015).  
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Flight manoeuvrability was calculated dividing body mass Dunning (2007) by wing length (Tobias et al., 
2022) as a proxy for wing loading. Wingspan and wing width are usually used to calculate wing loading, but 
these measurements are not always available and recorded consistently for seabird species. As wing 
length is typically very well recorded for most species, we used this measurement for our analysis. In 
Australia, wingspan data was used from Handbook of Australian, New Zealand and Antarctic Birds 
(HANZAB, Marchant et al., 1990-2006) to plot the correlation between the available wingspan 
measurements and wing length data from Avonet (Tobias et al., 2022). We were satisfied that the 
correlation between wing length and wingspan was sufficient to use wing length as a proxy. 

 

 

Figure 17: Relationship between wingspan (maximum values from HANZAB) and wing length (AVONET) for seabird 
species. Points are coloured by family, and a linear regression line is shown. 

 

For nocturnal activity, we categorised species into types of night activity. These were nocturnal activity, 
partially active at night and diurnal activity. The categories based on flight information from a literature 
review, including data from a recent review of Procellariform flight height and nocturnal activity carried out 
in Australia (Miller et al., 2025). All categories were given a score between 0.5-1 as shown below. 

Nocturnal Category Score 
Nocturnal Activity 1 
Partially Nocturnal Activity 0.75 
Diurnal 0.5 

 

Additional Risk (AddR): Despite over four decades of collision risk modelling and its central role in 
Environmental Impact Assessments for offshore wind developments in the Northern Hemisphere, much 
remains unknown about the factors that contribute to seabird collisions (Madsen & Cook, 2016; Cook et 
al., 2025). As a result, the primary and aggravating factors above (exposure to offshore structures, flight 
manoeuvrability and nocturnal activity) may not fully encapsulate traits or behaviours that impact an 
individual’s risk of collision. To address this, we include an additional risk factor for collision. Where there 
has been documented evidence that species in Australia can collide onshore (Hull et al., 2013), an extra 
risk value is added. As we cannot establish from event records alone why these collisions occur, we treat 
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the factor as additive. There was no evidence of collision at offshore sites in Australia, therefore the 
maximum score applied was 0.2. 

 

Evidence of Collision Value Species Sources 

Offshore Collision 1 Not applicable  

Onshore collision  0.2 Australasian Gannet, Common Diving-petrel, Grey-backed 
Storm-petrel, Short-tailed Shearwater, White-faced Storm-
petrel, Wilson’s Storm-petrel 

Hull et al., 
2013 

No evidence of collision 0 All remaining species  

 

Displacement (Di): The presence of offshore development may also deter seabirds from areas or cause 
them to alter their movements and behaviours. Changes in distribution of seabirds in response to offshore 
windfarm development have often been recorded. The strength of this response often varies between taxa, 
breeding seasons, spatial and temporal extent of the disturbance and this response can be attraction or 
avoidance (Searle et al., 2018; Lamb et al., 2024). Avoidance behaviour may adversely impact seabirds the 
most where it displaces them from key foraging areas or notably changes their time-energy budgets. 

Displacement can be split into three types (Figure 18): 

1. Macro-avoidance is where birds avoid an entire windfarm  
2. Meso-avoidance is where birds will enter a windfarm but avoid all the turbines.  
3. Micro avoidance is where birds move in and around the turbines but avoid the blades. 

 
Figure 18: Diagram explaining the differences between macro, meso, and micro avoidance. Macro-avoidance (1) is 
where individuals avert from and entire windfarm area when flying. Meso-avoidance (2) is where individuals fly into a 
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windfarm but fly between turbines once they enter. Micro-avoidance (3) is where individuals fly amongst the turbine 
blades of individual turbines but carry out flight manoeuvres in order to avoid collision.  

 

Displacement was calculated as follows: 

𝐷𝑖  =   (
𝐷𝑖𝑀𝑇  +  𝐷𝑖𝑆𝑡

2
)   × 𝐹𝑙𝑒𝑥 

 

Disturbance from Marine Traffic (DiMT) and Static Structures (DiSt) are the primary factors for 
calculating displacement for seabirds. In line with the onshore approach, we applied a literature review 
looking for articles published regarding bird displacement to understand how likely different bird families 
are to be impacted. Some authors do not distinguish between these types of disturbances. However, since 
marine traffic (i.e., vessels and helicopters) is expected to increase during construction and operation of 
offshore wind farms, we include them separately. For some species we did not find information about both 
disturbance types, but only for fixed structures; on those occasions, we scored both parameters equally. 
As these factors may operate independently, an average of the two is used to estimate 
disturbance.Disturbance from static Structures was divided into four categories. Disturbance from marine 
traffic was divided into three categories. For both factors, disturbance scored from 0.5 (low disturbance 
response) to 1 (high disturbance response). 

Category of disturbance from 
Static Structures 

 Species Groups  Risk Score 

1 Albatrosses, Cormorants, 
Frigatebirds, Petrels, Shearwaters, 
Southern Storm-Petrels,  

 0.5 

2 Gulls, Terns, Noddies, Skuas, 
Tropicbirds, Penguins, 

 0.67 

3 Boobies  0.83 

4 Gannets, Boobies 1 

 

Category of disturbance from 
Marine Traffic  

 Species Groups  Risk Score 

1 Frigatebirds, Gulls, Northern Storm-
Petrels, Southern Storm-Petrels, 
Tropicbirds 

 0.5 

2 Albatrosses, Boobies, Cormorants, 
Gannets, Noddies, Petrels, 
Shearwaters, Skuas, Terns 

 0.75 

3 Penguins 1 

 

Habitat Flexibility (Flex) is the aggravating factor used for displacement. While the marine environment is 
dynamic and habitats often change overtime, the flexibility of foraging habitat use and diet specialisation 
varies from species to species. As flexibility influences the severity of the impacts of displacement, it is 
multiplied by the primary disturbance risks. Local reports were used to categorise the species in Australia 
(Garnett et al., 2015; Reid et al., 2023; Reid & Baker, 2025). Where no data was available for the species, 
proxy species were used to estimate factors. Habitat flexibility was categorised into four groups from 0.5 
(high habitat flexibility) to 1 (low habitat flexibility) and multiplied by the primary factor as shown below.  
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Habitat Flexibility Category  Risk Score 

1 0.5 

2 0.67 

3 0.83 

4 1 

 

Overall Sensitivity: 

Once collision, displacement and population susceptibility were all individually scored, collision and 
displacement were both multiplied the population susceptibility (PopS) to produce a collision sensitivity 
index (CoSI) and a displacement index (DiSI) as shown below. 

𝐶𝑜𝑆𝐼  =  𝐶𝑜  × 𝑃𝑜𝑝𝑆  

𝐷𝑖𝑆𝐼  =  𝐷𝑖  × 𝑃𝑜𝑝𝑆  

 

Because population susceptibility was considered more certain than individual risks of collision and 
displacement, the individual factors were scaled to a lower range of values. Consequently, population 
susceptibility had a stronger influence on the overall calculations. All collision and displacement factors 
were scored between 0.4 or 0.5 and 1, while conservation status (CnS) and annual adult survival (Su) 
retained their full scoring range. 

 

Table 2: Summary of sensitivity factors used to assess seabird sensitivity to offshore wind for the AVISTEP offshore maps 
in Australia, categorised by risk type (population or individual), associated pressure (collision or displacement), and 
factor type (primary, aggravating, or additional), with corresponding scoring scales. 

Risk Type Pressure Factor Type  Factor Scale 

Population Population 
Susceptibility 
 

Primary Conservation Status 0.06-1 

Aggravating Annual Adult Survival  data 

Individual 
 

Collision 
 

Primary Flight Behaviour  0.4-1 

Aggravating Flight Manoeuvrability 0.5-1 

Nocturnal Flight Activity 0.5-1 

Additional Evidence of Collision 0.2 

Displacement 
 

Primary   
 

Disturbance to Marine Traffic 0.5-1   

Disturbance to Static Structures 0.5-1   

Aggravating Habitat Specialisation 0.5-1 
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Mapping distribution for all seabird species– STEP 4 
Seabird distributions change over their annual cycle, and a variety of spatial information is available to 
estimate areas used across the year by seabird species for offshore AVISTEP maps in Australia (such as 
breeding colony information, known core migratory areas, tracking data and at-sea observations). As with 
onshore, distribution maps are rasterised into a 5x5km grid. Each species distribution is split into areas of 
breeding distribution and their all-year distributions. 

Seaward extensions 
This analysis uses foraging range estimates and colony abundance counts to produce density estimates of 
abundance extending from breeding sites. These seaward extensions were then used to estimate breeding 
distribution around the coast of mainland Australia and Tasmania. 

First, colony size and location data was collated for all breeding species. This included a summary colony 
count dataset for island breeding sites in Australia (Quade, 2025), and Fairy Tern (Sternula nereis) and Little 
Tern (Sternula albifrons) site counts from BirdLife Australia. For sites with multiple years of data, only the 
most recent counts were used. The relative abundance of mature breeding individuals was estimated for 
each species using the following approach: 

 Count x 2 for 
▪  counted in burrow 
▪ on nest 
▪ chicks for species with one clutch 

 Count x 2/3  
▪ for individual counts 
▪ for total population counts where a mix of count methods have been used for 

the species across the dataset. 
▪ for chicks counts for a species with maximum clutch of 3 

 Count x1  
▪ for chicks counts for a species with maximum clutch of 2 
▪ for total population counts where only total population counts have been used 

for estimating abundance for that species across all colonies in the dataset 
 All counts rounded up to the nearest whole number 

Once breeding sites were identified and relative abundance counts were calculated, a literature review was 
carried out to collate the recorded foraging ranges for each breeding species. Where multiple records in 
the region were available, the “mean maximum” values were taken. Where not all records were from 
studies in the region, preference was given to records within the region. Where no maximum estimates 
were available, mean values were used. Where there were no suitable records, values from a suitable 
comparable species were used. 

Using these values, gridded density maps extending from the colonies were produced for 37 species. These 
were made using a log decay function, which assumes that marine space use reduces as distance from 
the colony via sea increases, limited to the foraging range estimate for each species and not including areas 
over land. Each colony was run for all species on a 5x5km grid, and all colony extensions were summed so 
that larger colonies contributed more to the species layer and areas within reach of multiple colonies had 
higher densities than those only within the foraging range of one colony. Layers were then scaled between 
0-1 to produce a layer of relative use of marine areas per species (see Figure 19).  
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Figure 19: Method for estimating kernel density estimates (KDE) for multiple colonies using foraging range estimates 
and weighting by colony abundance. 

 

Seabird tracking data 
To investigate high use areas both inside and out of the breeding season, tracking data was collated and 
analysed. Platforms such as the Seabird Tracking Database and Movebank were used to search for 
available data, and a literature review was also conducted to identify potential data owners. Global 
Positioning System (GPS), Platform Transmitting Terminal (PTT) and light-based geolocation loggers (GLS) 
data were all requested where it was found that tracks overlapped with the selected AOI. GPS data has the 
lowest error, followed by PTT and then GLS has by far the highest error. We assessed each dataset for quality 
and sample size, and decided the most appropriate use. High-quality data from the breeding season was 
used to refine our density maps that represent the space use of birds from the breeding colony. While for 
some datasets, we used tracks only to validate and edit species range maps (see following section).  

For tracking data used in analysis, we cleaned the data by removing any duplicate records and ran a 
McConnel speed filter with a suitable speed for each species. Tracks were then assigned to data groups to 
ensure that any spatial aggregation patterns exhibited by a species during breeding stages only are 
captured and not diluted by inclusion of data from outside the breeding period with potentially very 
different distributions. We interpolated tracks to obtain locations at regular intervals because this is 
required for kernel density analysis, choosing interpolation intervals to minimise difference from the 
original dataset. We removed sections of tracks with very large time gaps between actual locations. For 
each species, we then used kernel density estimation (KDE) using the adehabitatHR R package as 
described in the Track2KBA package (Beal et al., 2021). The smoothing parameters used for kernel densities 
were determined according to bird behaviour (larger smoothing parameters were used for species that 
travel further and faster than others) and the accuracy of the data available.  

Tracking data that was available for breeding individuals were analysed and weighted by relative colony 
abundance. These outputs were compared with the seaward extension produced for this site, and 
substituted seaward extension estimates where appropriate (e.g. Figure 20). All tracking data from non-
breeding individuals was analysed using the same weighted kernel density estimations from the Track2KBA 
package (Beal et al., 2021) and used to investigate species distribution outside of the breeding period.  
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Figure 20.  Example for the Fairy Prion, with the seaward extension method only (top left) and the distribution layer after 
replacing the distribution for Kanowna Island with kernel density map created using a GPS tracking dataset 
(data.seabirdtracking.org/dataset/2054) contributed by John Arnould (top right). Example for the Shy Albatross, with the 
seaward extension method only (bottom left) and the distribution layer after replacing the distribution for Albatross 
Island with kernel density map created using a GPS tracking dataset (data.seabirdtracking.org/dataset/1381) 
contributed by Kris Carlyon (bottom right). 

 

Range Maps 
For Australia, range maps were used to establish the year-round distribution of the listed species. Global 
range maps were sourced from BirdLife International as used in the IUCN Red List assessments (HBW & 
BirdLife International, 2024). These maps contain information about resident, passage and breeding areas 
for seabirds. We also had access to range maps delineated by BirdLife Australia in 2014, with some updates 
since (BirdLife Australia, pers. comm.). These maps show areas of vagrant and core usage within Australia 
(e.g. Figure 21) Differences in spatial extent between both maps was investigated for each species and 
compared with seabird tracking data and observation records from eBird (eBird, 2025) and Birdata (BirdLife 
Australia, 2025b). A suitable distribution was decided on a species-by-species basis in consultation with 
BirdLife Australia, but preference was given to the range maps produced by local experts. These core and 
vagrant areas were incorporated into our analysis, with core areas contributing with double the numerical 
value of vagrant areas. Where no local maps were available, IUCN range maps were used and treated as 
vagrant areas. For one species, the Amsterdam albatross (Diomedea amsterdamensis), the species range 
was determined from analysing a large sample of geolocator (GLS) data as no other sources were available. 
A conservative threshold was used to delineate this area (50% of the kernel density analysis) which was 
treated as a vagrant area.  
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Figure 21: Example of core and vagrant ranges used for Buller's albatross (Thalassarche bulleri) around the coast of 
Tasmania and southeast coast of mainland Australia, and the corresponding tracking dataset used to verify the ranges 
(data.seabirdtracking.org/dataset/2269). Cells in yellow indicate a lower value for areas of vagrant distribution (0.5) and 
darker cells in orange indicate a higher weighting of cells, for core areas (1). 

 

Applying Sensitivity Scores to Species Distribution 
Breeding distribution maps were created by merging breeding tracking kernel density outputs and colony 
seaward extensions together and getting the total sum values for each species. Each species breeding 
layer was then scaled to 0-1 to create a map of relative use of the marine area during breeding periods. At 
this point in the analysis, CoSI and DiSI scores were applied to the individual species breeding layers. For 
each species, the higher of the two scores was multiplied by the distribution values in the breeding layer. 
Once complete, all species layers were then combined and summed in each overlapping cell to create a 
single layer. This output layer for each species had the total of the CoSI or DiSI values for each breeding 
species. This was then scaled between 0 and 1 to create a breeding sensitivity layer (Figure 22). 
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Figure 22: Output breeding sensitivity for Australia AVISTEP Offshore sensitivity mapping at a 5x5km resolution. Scaled 
between 0-1, this shows the relative usage of marine areas within the Area of Interest (AOI) for breeding periods 
combined with Collision Sensitivity (CoSI) or Displacement Sensitivity (DiSI). Kernel density analysis of colony foraging 
estimates (seaward extensions) and suitable tracking data (GPS) were produced and merged for 37 species 

 

All year distribution maps were created by overlapping all range maps that have core and vagrant 
distributions were delineated and valued as 0.5 (vagrant) or 1 (core). At this point in the analysis, CoSI and 
DiSI scores were applied to the individual species layers. For each species, the higher of the two scores 
was multiplied by the core or vagrant distribution values. Once complete, all species layers were then 
combined and summed in each overlapping cell to create a single layer. This output layer for each species 
had the total of the CoSI or DiSI values for the core and vagrant areas of all listed species This was then 
scaled between 0-1 to create a single all year sensitivity layer (Figure 23). 
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Figure 23: Output for the year-round sensitivity for Australia AVISTEP Offshore sensitivity mapping at a 5x5km resolution. 
Scaled between 0-1, this shows the combined core and vagrant distribution of all listed species with Collision 
Sensitivity (CoSI) or Displacement Sensitivity (DiSI) values applied to each cell. 

 

Finally, the two distribution maps were combined to produce a cumulative species sensitivity map. The 
maps were overlaid, and the maximum value from each cell was retained, resulting in sensitivity scores 
ranging from 0 to 1 for all species. This output represents the highest sensitivity value from either total 
breeding sensitivity or year-round sensitivity within each cell (Figure 24). 
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Figure 24: Map of the cumulative species sensitivity for Australia AVISTEP Offshore sensitivity mapping at a 5x5km 
resolution. Scaled between 0-1, this shows the overall gradation of sensitivity when breeding and year-round 
sensitivities are combined. When merged, the maximum value was taken from either layer in every overlapping cells 

 

Mapping distribution for non-marine species– STEP 5 
Migratory wader tracking data 
Although less studied and conspicuous than migratory routes in other regions such as the American and 
African-Eurasian flyways (Chambers, 2008; Yong et al., 2021; Shi et al., 2022), understanding the 
movement of avian species in Australia is critical to understanding connectivity between critical stopover 
sites, breeding and feeding grounds. Australia is home to species possessing various movement strategies, 
from typical full annual cycle, seasonal migration, to partial migration and full nomadism with irregular 
paths and unpredictable timing (Chan, 2001; McGinness et al., 2024a, 2024b).  

To map important areas for migratory terrestrial birds and waders, we used a combination of satellite 
tracking data and observations. First, we searched for published tracking data and could access datasets 
of sufficient quality for two migratory waders, the Bar-tailed Godwit (Limosa lapponica) and Far Eastern 
Curlew (Numenius madagascariensis). 

To clean the data, we removed duplicate records, ran a McConnel speed filter with a speed of 100 kmh -1, 
and removed individuals that did not have sufficient locations in the AOI. We interpolated to obtain 
locations at regular intervals because this is required for kernel density analysis, choosing interpolation 
intervals to minimise difference from the original dataset. We removed sections of tracks with very large 
time gaps between actual locations. We cropped the tracks to the AOI plus a buffer larger than the 
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smoothing parameter. For each species, we then used kernel density estimation (KDE) in the adehabitatHR 
R package (Beal et al., 2021) to identify key stop over sites, which have very high density of time spent by 
tracked birds. We extracted the contours of the highest density of time spent by tracked birds as polygons 
to be included in the final map at the highest sensitivity as sensitive sites for terrestrial bird migration. We 
repeated this step until all stopover sites were accounted for. The remaining kernel density raster for each 
species then represented the migratory movements across the marine environment, indicating the relative 
density of time spent by tracked birds in each 5x5 km grid cell. We rescaled the rasters values to have a 
maximum value of 1 and combined the rasters for the two species together by taking the maximum values 
from each (Figure 25).   

   

Figure 25. For tracked migrating waders, important wintering/stopovers sites in red (left) and migratory routes across 
marine areas with yellow indicating the highest importance (right). 

 

Terrestrial bird migration observation data 
To integrate terrestrial bird migration across open water, we adapted the population-level migration 
modelling framework developed by La Sorte et al. (2016), which used citizen science observations to infer 
large-scale avian migration routes across the Americas. Their approach demonstrated that occurrence 
data can reliably capture population-level movement dynamics while integrating individual variation in 
timing and routing. We applied and extended this framework to the Australian context, where bird 
movements are influenced by more variable and event-driven environmental conditions. 
 
We identified three generalised movement categories among Australian birds, based on ecological 
literature (Hawkins et al., 2005; Corriveau et al., 2020; Becker et al., 2023) and discussions with experts, 
separated by movement predictability and spatial separation of seasonal distributions: 

• Classic seasonal migrants. Species exhibiting consistent, directional seasonal movements 
between distinct breeding and non-breeding regions 

• Partial or facultative migrants. Species with population-specific strategies showing both resident 
and migratory behaviours 

• Nomadic and irregular movers. Species responding to episodic resource pulses (e.g. rainfall, fire, 
vegetation growth) with variable timing and directional 

 

Data Acquisition and Preparation 
We obtained bird observation data from the eBird Basic Dataset (Sullivan et al., 2009; eBird, 2025), a global 
citizen science database containing over 1 billion observations, and BirdLife Australia’s Birdata platform 
(BirdLife Australia, 2025b). Records were filtered to complete checklists allow researchers to calculate 
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reporting rates, as they distinguish true absences from simple non-reported species. This infers a 
presence-absence dataset, rather than presence only (Strimas-Mackey et al., 2023). We applied a multi-
stage filtering protocol via the auk R package (Strimas-Mackey et al., 2025); retaining checklists with 
standardised survey protocols only and survey durations between 5 and 300 minutes, distance travelled 
0–35 km, keeping only observations recorded between 2005 and July 2025. Data included observations 
across the East Asia Australasia Flyway (Bangladesh, Brunei, China, Japan, Cambodia, South Korea, North 
Korea, Laos, Mongolia, Myanmar, Nepal, Philippines, Russia, Singapore, Thailand, Taiwan, Timor-Leste and 
Vietnam). 
 

Spatial Framework 
We established a hexagonal grid framework using the discrete global grid system (DGGS) approach (Sahr, 
2011), as these provide superior spatial properties (less distortion across longitude and latitude) and 
reduced edge effects in spatial analyses. Grid resolutions were determined to reflect species-specific 
migration type. For typical migrants, we generated grids at 15,000 km², whereas nomadic species required 
smaller grid cells (5,000 km²). Each eBird checklist was assigned to its corresponding hexagonal cell. 
 

Temporal Framework 
The study period was partitioned into fixed 14-day windows. Each observation was assigned to its 
corresponding temporal window, which were classified by Austral season definitions (summer = December 
to February, autumn = March to May, winter = June to August, spring = September to November). However, 
for trans-equatorial migrants that breed in boreal regions, we aligned the seasons with Northern 
Hemisphere breeding phenology. 
 

Grid-Time Combination Matrix 
A fundamental space-time analytical unit was created by cross-multiplying spatial grids with temporal 
windows, producing combinations of hexagon cells and time periods. This grid-time matrix forms the basis 
for all subsequent node detection analyses, with each space-time unit representing a specific geographic 
area during a specific time period.  
 

Effort Correction 
Raw detection rates are confounded by spatial and temporal variation in observer effort, with longer 
checklists and larger observer parties increasing detection probability independent of true species 
abundance (Kéry & Royle, 2015). To obtain reporting rates that reflect species occurrence patterns, we 
implemented effort correction at: checklist level, accounting for the impact of effort duration and number 
of observers; and cell-level, calculating a simple and effort-weighted reporting rate: 

 
 
The weighted reporting rate increases the weighting for high-effort checklists over low-effort, providing a 
more robust estimate of true detection probability. 
 

Node Detection 
To account for spatial heterogeneity in eBird sampling intensity, we implemented density-adaptive 
bandwidth for Gaussian kernel spatial smoothing (Worton, 1989; Lilleyman et al., 2024). This method varies 
the smoothing extent inversely with local data density, applying tighter smoothing in well-sampled areas 
and “borrowing” more information from neighbours in sparsely sampled regions. This adaptive approach 
is more appropriate than fixed-bandwidth methods for citizen science data, due to the larger variation in 
spatial sampling effort. For each cell, we calculated observation density by averaging total observations 
(all checklists, including non-detections) across the temporal windows, to ensure stable density 
estimates. The overall mean density across all cells was calculated with observations greater than zero to 
serve as the reference point for adaptive scaling. For each cell, i, bandwidth was calculated as: 
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Where base bandwidth is a tier-specific parameter (Classic migrants: 20 km; Partial migrants: 10 km; 
Nomadic: 10 km) chosen to align with grid cell sizes and species movement scales. This formula produces 
narrower bandwidths in high-density areas where local density exceeds the global mean, and wider 
bandwidths in low-density areas where local density falls below the global mean. 

We applied minimum and maximum bandwidth constraints to prevent biologically unrealistic smoothing 
scales. For most species, the minimum bandwidth was set to 5 km to prevent over-fitting to single-cell 
sampling noise, and the maximum to 50 km to maintain meaningful spatial structure. For pelagic or highly 
mobile species, we adjusted these limits to 20 km minimum and 150 km maximum to reflect their larger 
movement scales. For cells with no observations, typically occurring at range edges or in poorly sampled 
regions, we assigned the maximum bandwidth value under the conservative assumption that uncertainty 
is highest where data are absent. 
 

Distance Weights 
To enable computationally efficient spatial smoothing across temporal windows, we precomputed a 
weight matrix describing the spatial relationships among all hexagon cells. We calculated great-circle 
distances between all pairs of hexagon centroids using the Haversine formula implemented in the 
geosphere R package. For each cell pair, we calculated Gaussian kernel weights based on the adaptive 
bandwidth for the source cell. The weight function assigned maximum weight to a cell itself (weight = 1 
when distance = 0) and exponentially decreasing weight to more distant cells according to the standard 
Gaussian kernel formula. Because Gaussian weights become negligible beyond approximately three 
standard deviations, we applied a weight threshold of 0.01 below which weights were set to zero, and 
enforced a maximum distance cut-off of three times the maximum bandwidth. Each row of the weight 
matrix was normalised to sum to 1 to ensure proper averaging behaviour during smoothing, dividing each 
weight by the row sum. For isolated cells with no neighbours within the maximum distance threshold, we 
set the diagonal weight to 1, meaning these cells retained their original reporting rate without spatial 
smoothing.  
 

Spatial Smoothing 
We applied spatial smoothing independently to each temporal window to preserve temporal patterns while 
reducing spatial noise. For each temporal window, we created a vector of reporting rates for all cells and 
applied matrix multiplication with the precomputed weight matrix. This operation computed the weighted 
average of reporting rates across neighbouring cells for each target cell, with weights determined by the 
adaptive bandwidth structure described above. 
 

Statistical Threshold-Based Node identification 
High-use nodes were identified by applying statistical percentile thresholds to smoothed reporting rate 
distributions, combined with temporal stability analysis and bootstrap uncertainty quantification. The 
threshold was calculated as the 95th percentile of smoothed reporting rates across all grid-time 
combinations, identifying the top 5% highest use space-time units (cells). This percentile-based approach 
provides a conservative, statistically defensible, and species comparable definition of high-use areas. Prior 
to threshold application, we filtered grid-time combinations to retain only those meeting minimum data 
quality standards. We required at least five checklists per grid-time combination by default, adjustable to 
three for rare species or ten for common species, and at least one species detection. Each grid-time 
combination was then classified as a high-use node if its smoothed reporting rate equalled or exceeded 
the calculated threshold. 

To distinguish consistently important areas from transient hotspots or sampling artefacts, we calculated 
temporal stability metrics for each spatial location across years. For each hexagon cell, we calculated 
detection frequency as the proportion of years in which the location was identified as a node, and the 
stability coefficient as the coefficient of variation of annual mean reporting rates. We classified locations 
as stable if they were detected in at least half of available years and in at least two distinct years. We also 
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calculated seasonal consistency as the number of distinct seasons (out of four Austral seasons) in which 
the location was identified as a node. 

We quantified node identification uncertainty through bootstrap resampling with 500 iterations by default. 
For each iteration, we resampled checklists within each grid-time combination with replacement using 
80% of the original sample size, recalculated smoothed reporting rates and thresholds on the resampled 
data, identified nodes using the same threshold approach, and recorded whether each original node was 
detected in the bootstrap iteration. For each original node, we calculated the bootstrap detection rate as 
the proportion of iterations in which the node was identified, and assigned bootstrap confidence 
classifications of high (detection rate ≥80%), medium (50-80%), low (20-50%), or unreliable (<20%). 
Unreliable nodes were excluded from final conservation recommendations. 

We combined temporal stability and bootstrap confidence into a composite reliability score calculated as 
the average of the stability score and bootstrap detection rate, each weighted equally. Nodes were 
classified as high reliability if the composite score was 0.8 or greater, medium reliability if between 0.5 and 
0.8, low reliability if between 0.2 and 0.5, and unreliable if below 0.2. Only nodes classified as high or 
medium reliability were retained for subsequent movement corridor inference analyses. The values of 
reliability are low to ensure that sufficient data was included in the model. 
 

Node Characterisation 
For each spatial location, we identified the months during which the location was classified as a node and 
mapped these months to Austral seasons (e.g. Figure 26 and Figure 27). Locations were classified by their 
temporal patterns of use, such as spring and autumn, suggesting migration corridors, three-season or year-
round suggesting extended residence or multiple functional roles. Tier specific seasonal cycle definitions 
were applied where appropriate, such as boreal seasons for trans-equatorial migrants. 
 
 

 
Figure 26. Example of high use nodes, calculated for Flame Robin, showing recorded observations for summer breeding 
and wintering. 
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Figure 27. High use node distributions for Flame robin across seasons. Size of points represent total abundance relative 
to time window t.  

 

Identifying Potential Flight Paths/Areas 
To estimate potential movement corridors between key high-use areas identified from eBird data, we 
generated potential paths between nodes representing robust, regularly used sites. There were not 
sufficient observations for the Orange-bellied Parrot (Neophema chrysogaster) to allow nodes to be 
identified, but their range is restricted to seven small patches for the non-breeding season and a single 
small patch for the breeding season, so we used the centroids of range polygons in place of nodes. 

To identify least-cost paths, we create a grid and assigned resistance values of 10 for terrestrial areas and 
1 for open water to represent relative preference of movement across each habitat. We also created rasters 
of the direction to and distance from each point using the Distance Accumulation tool in ArcGIS Pro (ESRI, 
2025). Least-cost paths were then calculated using the Optimal Path As Line tool in ArcGIS Pro between 
each pair of nodes from one month or season to the next (e.g. Figure 28). As the Orange-bellied Parrot, Swift 
Parrot (Lathamus discolor) and Flame Robin (Petroica phoenicea) do not use coastal habitats, we then 
cropped the cost paths to within 15km of the coast. 

To represent the spatial density of potential flight activity between these nodes, we applied the Line 
Density tool in ArcGIS Pro to the least-cost paths. The tool calculates a kernel density surface where each 
cell’s value is proportional to the sum of path lengths within a specified search radius, weighted by distance 
from the path line. We used a 150km search radius for species crossing Bass Strait (Orange-bellied Parrot, 
Swift Parrot and Flame Robin), and a 200km search radius for the Whimbrel (Numenius phaeopus) because 
the scale of movement was larger. This produced a smoothed, gridded surface representing relative 
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corridor use likelihood (e.g. Figure 28). The resulting raster for each species was normalised and an all-
species raster was created by combining by the maximum value for each grid cell. 

 

 

Figure 28. Example for the Flame Robin of all least cost lines cropped to Bass Straight plus a 15km terrestrial buffer 
(left), and the results of the line density tool (right). 

 

The layer created from the least cost-path line densities was then combined with the maximum values from 
the raster created from the tracking data. We used Jenks natural breaks with 8 categories to produce a final 
migration layer for combination with other inputs (Figure 29). 
 

 

Figure 29. Importance of marine areas for non-marine migrating birds produced from a 
combination of tracking data and modelling from observations, with yellow indicating the most 
important areas. 
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Categorising Sensitivity– STEP 6 
Once the cumulative seabird species sensitivity result layer was produced, the migratory bird map was 
applied to create the preliminary species sensitivity results (for more details see Step 7). Next, we 
categorised the results into four categories of low-high sensitivity. This was a classed raster with all cells 
values from 1 to 4 (green to red). This was done using Jenks natural breaks in the ClassInt R package 
(Bivand, 2024). Due to the large area contained within the offshore AOI of this project, 2 additional 
subcategories were input into the existing four categories using Jenks natural breaks again. As shown in 
Figure 30, this created eight overall categories from green to red (very low risk, low risk, low to moderate 
risk, moderate risk, high risk, high to very high risk, very high risk and extremely high risk). 

 

Figure 30. Areas of low to high sensitivity to offshore wind development in Australia categorised into 8 categories by 
Jenks natural breaks after bird migration weighting is applied to the cumulative species sensitivity layer 

 

Adding Other Important Areas for Birds and Conservation– STEP 7 
As with onshore, areas that were determined to be key concern for bird conservation were included in our 
analysis for offshore wind. Shapefiles of selected areas were overlapped with the project fishnet and 
overlapping cells were rasterised to match the 5x5km project grid. These areas were split into two types, 1) 
highly weighted important bird or conservation and 2) important bird or conservation areas added at the 
highest sensitivity. 

Highly Weighted Areas 
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These are areas that are weighted against the existing underlying values before or after Jenks natural breaks 
are calculated. For Australia, a land bird migration layer was applied to the preliminary species sensitivity 
results before Jenks natural breaks was applied. On the other hand, a select number of Marine Protected 
Areas (MPAs) were applied after the sensitivity classes had been estimated with Jenks natural breaks. 

Bird Migration 
Using the values from the migratory bird layer, an additional weighting of up to 25% was applied directly the 
primary species sensitivity layer. Therefore, the resulting score for a cell overlapping with a selected site 
was dependent upon the underlying sensitivity of the species output for that cell. This step was made 
before the sensitivity categories were estimated. 

Marine Protected Areas 
Australia has designated 45.4% of its waters as Marine Protected Areas (MPAs) (WDPA, 2025), a large 
proportion of which is contained within our area of analysis. Given the large area and that protected areas 
are not solely designated for birds, it was not appropriate to automatically assign all cells overlapping with 
the MPA network as the highest level of sensitivity. To determine the best approach, the level of protection 
and habitat or species designation was investigated as part of our analysis. It was determined that MPAs 
would be weighted according to their IUCN categories. Any MPAs that were Ia, Ib, or II sites were selected. 

Fo Australia, areas which overlapped with relevant MPAs were given a higher weighting rather than 
automatically being set as highest sensitivity. An additional weighting of 5% was applied after sensitivity 
was categorised using Jenks natural breaks. Therefore, the resulting score for a cell overlapping with a 
selected site was dependent upon the underlying sensitivity of the species output for that cell. This step 
was made before the sensitivity categories were estimated.  

We used the World Database of Protected Areas (WDPA) from the Protected Planet website 
(www.protectedplanet.net). This database is updated regularly by governments and curated by UNEP-
WCMC and includes the most up-to-date information on protected areas. The latest version from 2022 was 
used for the remaining countries. All protected areas classified as coastal or marine were included. 

Additive Areas 
These are areas that have been rasterised at the highest sensitivity (value of 1). They were combined to form 
a single additive layer which was then added on top of the total classed sensitivity layer to produce the 
finalised map. The addition of these sites did not influence the relative sensitivity of the surrounding cells.  

For Australia, the sites considered were seabird breeding sites, important areas of conservation, seascape 
features and oceanic habitats. Important marine oceanic habitats and seascapes were included due to 
their importance for seabirds and marine ecosystems in general. The important conservation areas 
included were and Key Biodiversity Areas and Ramsar sites.  

Breeding Colony Buffers: We included a 5km buffer around all breeding seabird colonies at the maximum 
sensitivity, regardless of species or colony size. This is to account for foraging for some species, and other 
behaviours that occur close to the colony for other species, such as preening (e.g. gulls), rafting (e.g. 
shearwaters) and kleptoparasitism (e.g. frigatebirds).  

Key Biodiversity Areas (KBAs): KBAs are a global dataset of areas of greatest significance for the 
conservation of the world’s birds. They cover about 6.7% of terrestrial area, 1.6% of marine area and 3.1% 
of the total surface area of the Earth (Donald et al., 2019). This dataset is curated by BirdLife International 
and available through their website (datazone.birdlife.org/site). Our analysis included the most up-to-date 
version of this data from 2025 (Birdlife International, 2025). We included all KBAs catalogued as marine by 
BirdLife International plus those listed as coastal KBAs. In total 166 sites overlap with our offshore AOI. 
These areas were all rasterised on a 5x5km grid and were given the highest sensitivity value.  

https://www.protectedplanet.net/
http://datazone.birdlife.org/site


179 
 

Ramsar Sites: Ramsar areas are wetlands of international importance designated under the Ramsar 
Convention (1971). These areas should be safeguarded for various biodiversity reasons, but mainly 
because they represent safe breeding and feeding grounds for birds and stopovers during migrations. We 
considered Ramsar areas according to the Department of Climate Change, Energy, the Environment and 
Water (DCCEE, 2025). 

Ocean habitats: The analysis contains information on the distribution of marine habitats that are of special 
importance for marine organisms and ecosystems. Overlapping cells with any of these habitats were given 
the maximum sensitivity value. 

Mangroves, coral reefs, submarine canyons and seagrass habitats were included in this analysis. Habitats 
such as coral reefs, mangroves and seagrasses are known to benefit seabirds during key periods of their 
annual life cycle (Unsworth & Butterworth, 2021; Benkwitt et al., 2023; Berr et al., 2023; Appoo et al., 2024). 
Seabird presence at these sites has been shown to act as a beneficial connector of nutrients between 
terrestrial and marine ecosystems (Unsworth & Butterworth, 2021; Jones et al., 2025). Meanwhile 
submarine canyons and seamounts were included as important potential marine hotspots (De Leo et al., 
2010; Morato et al., 2010; Huang et al. 2014). 

• Mangroves. This dataset was created mostly from satellite imagery and shows the global 
distribution of mangroves. It was produced as a joint initiative of several international 
organizations (Spalding et al., 2010). 

• Coral reefs. This dataset shows the global distribution of coral reefs in tropical and subtropical 
regions. It is the most comprehensive global dataset of warm-water coral reefs to date (UNEP-
WCMC et al., 2021). 

• Seagrasses. This global dataset of seagrass distribution was created from multiple sources (in 
128 countries and territories), including maps (of varying scales), expert interpolation and point-
based samples (UNEP-WCMC & FT Short, 2021). 

• Submarine canyons. This is a dataset of Australian canyons manually digitised using a variety of 
bathymetry datasets (Huang et al., 2014) 

• Seamounts. This is a dataset of seamounts of biological importance included in the ‘Marine Key 
Ecological Features’ dataset produced by the DCCEEW in Australia (2013). 

This information is curated by UNEP-WCMC and available through the Ocean Data Viewer on their website 
(https://data.unep-wcmc.org/). 

 

Applying Additional Sites 
All additional site layers were rasterised to a 5x5 km grid and assigned a value of 1. These layers were then 
combined by taking the maximum value from each cell, producing a single high-sensitivity layer with binary 
values (1 or 0). This layer was subsequently overlaid with the MPA-weighted output, using the maximum 
value from each layer to generate the final sensitivity output. This process did not alter the relative 
sensitivity of surrounding cells and had no effect on the Jenks natural breaks classification.  

https://fed.dcceew.gov.au/datasets/erin::marine-key-ecological-features/about
https://fed.dcceew.gov.au/datasets/erin::marine-key-ecological-features/about
https://data.unep-wcmc.org/
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Figure 31. The final sensitivity categories for Australia AVISTEP Offshore sensitivity mapping at a 5x5km resolution after 
the application of weighted MPAs and the addition of highly sensitive areas to the preliminary sensitivity categories. 
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